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1. Introduction

In this �rst lecture, we will learn, very roughly, what Shimura varieties are and why
they are interesting. Everything brought up today will be covered in much more detail
later in the course, and it will be perfectly normal that many terms will be new during a
�rst reading. Our goal today is only to get an overview.

1.1. Why study Shimura varieties? Shimura varieties combine two interesting prop-
erties:

• They are varieties de�ned over number �elds which makes them interesting from a
number theory perspective. Most importantly, their étale cohomology groups are rep-
resentations of Galois groups of number �elds.

• Their de�nition is in terms of connected reductive algebraic groups G/Q. They come
equipped with an action of the adelic points G(Af ), which implies that their étale
cohomology groups are also G(Af )-representations.

Hence, the étale cohomology groups of Shimura varieties are both Galois and G(Af )-
representations. Conjecturally, this two-fold structure is described by the global Langlands
correspondence. Conversely, one can use the cohomology of Shimura varieties to prove
important cases of this correspondence. This is the main motivation for our course, and
our overall aim is to learn about several important ideas in this context.

Let us mention that Shimura varieties are also interesting for other reasons. For exam-
ple, the study of heights on the Siegel variety plays an important role in Faltings's proof
of the Mordell Conjecture [3]. Another example is the Gross�Zagier formula [5], which
states an identity between height pairings of complex multiplication points on the modular
curve and derivatives of L-functions. It plays a major role in the proof of cases of the
Birch�Swinnerton-Dyer Conjecture. Its higher-dimensional generalizations, the arithmetic
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Gan�Gross�Prasad Conjectures [4,17], are an important topic in current arithmetic geom-
etry research. In a related direction, the Kudla program [8] seeks to establish connections
between cycles on Shimura varieties and modular forms or Eisenstein series. The proof of
the averaged Colmez conjecture [1, 16] has been an application of such ideas.

1.2. This course. The �rst part of our course will be an introduction to Shimura varieties.
We will learn how to de�ne them in terms of moduli spaces of abelian varieties and how to
relate this de�nition to the group-theoretic one of Deligne. One of our goals is to obtain
familiarity with the adelic formalism which will become important later.

In the second part of the course, we will study the cohomology of Shimura varieties.
We will �rst get to know Matsushima's formula, which expresses the Betti cohomology of
compact Shimura varieties in terms of automorphic representations. We will then learn
about point counting in characteristic p (Langlands�Kottwitz method). The aim here is
to give an orbital integral expression for the number of Fpn-points of the reduction mod p
of the Shimura variety.

1.3. References. The following two are our main background references.

• The introductory lecture notes by Milne [12]. They focus on the group-theoretic de�-
nition of Shimura varieties and the de�nition of canonical models.

• The �rst few articles in the lecture notes volume [6]. They provide an introduction to
PEL type Shimura varieties. The article of Yihang Zhu [18] is directly related to the
material of the second part of the course.

1.4. Prerequisites. We will assume as little as possible. The only necessary background
is some familiarity with varieties and algebraic number theory.

In the rest of this introduction, we sketch the de�nition of Shimura varieties and give
an outline of the course contents.

1.5. Shimura data. Shimura varieties are attached to Shimura data. The formalism
starts with a connected reductive group G over Q. For example, G might be one of the
following.

• G = GL2

• G = GSp2g, the general symplectic group in 2g variables. Let J =
(

1g
−1g

)
be the

matrix de�ning the standard symplectic form on Q2g. Then GSp is de�ned by

GSp2g(Q) =
{
g ∈ GL2g(Q) | tg · J · g = c · J for some c ∈ Q×

}
. (1.1)

It is related to the usual symplectic group Sp2g by the exact sequence

1 −→ Sp2g −→ GSp2g
c−→ GL1 −→ 1.

The map c is called the similitude factor. Note that GSp2 = GL2 and Sp2 = SL2,
recovering the previous example.

• G = U(V ), a unitary group. Let K/Q be an imaginary quadratic extension. (This
means that R⊗QK ∼= C.) Let V be an n-dimensional hermitian K-vector space. If V
is not positive or negative de�nite then U(V ) can occur as part of a Shimura datum.

Next, the formalism requires the datum of a homomorphism of real algebraic groups

h : C× −→ G(R) (1.2)
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which satis�es certain axioms introduced by Deligne [2]. Such an h is called a Deligne
homomorphism. If g ∈ G(R) is a real point of G, then we may conjugate h to de�ne a
new Deligne homomorphism, (

ghg−1
)
(z) := gh(z)g−1.

Let Sh ⊂ G(R) denote the centralizer of h, meaning the subgroup of elements g with
ghg−1 = h. The quotient X = G(R)/Sh is precisely the set of Deligne homomorphisms
that are conjugate to h. An important consequence of Deligne's axioms is that X is a �nite
union of hermitian symmetric domains for G(R). In particular, it is a complex manifold.
The pair (G,X) is called a Shimura datum.

Example 1.1. Consider G = GL2. We can embedd C into M2(R) as R-algebra by

h(a+ bi) :=

(
a −b
b a

)
.

If we restrict this embedding to unit groups, then we obtain a Deligne homomorphism h :
C× → GL2(R). Its centralizer is precisely h(C×) and the quotient X is the set of complex
structures on R2. Since C× is connected and since GL2(R) has two connected components,
X has two connected components. We want to give a more explicit description of X.

Recall that P1(C) is the space of complex lines in C2. Clearly, the Lie group GL2(C)
acts on it by its natural action on C2. The subgroup GL2(R) preserves the real projective
line P1(R) and hence acts on the complement,

GL2(R) ⟳ C\R, g · τ =
aτ + b

cτ + d
. (1.3)

The complement C\R is the union of the upper and lower half plane which we often denote
by H±. As an open subset of C, it is naturally a complex manifold. Let us compute the
stabilizer of i:

i =
ai+ b

ci+ d
⇐⇒ −c+ di = ai+ b

⇐⇒ a = d, c = −b.
(1.4)

That is, the stabilizer of i is precisely h(C×). Moreover, it is clear that GL2(R) acts
transitively on H± because (

a b
1

)
· i = ai+ b.

Hence, we see that
X

∼−→ H±, ghg−1 7−→ g · i (1.5)

as smooth manifolds in a GL2(R)-equivariant way. We have not de�ned the complex
structure on X, but it is, in fact, given by the complex structure on H± under (1.5).

Remark 1.2. Some groups, such as GLn with n ≥ 3, cannot occur as part of a Shimura
datum. For example, the dimension of the symmetric space for GL3(R) is

dimSL3(R)− dimSO(3) = 8− 3

which is odd and hence cannot be a complex manifold.

1.6. Shimura varieties over C. Given a Shimura datum (G,X), one next de�nes a
complex variety in the following way. Let A denote the ring of adeles of Q, and let
A = Af × R be its factorization into �nite and archimedean part. (We will review these
de�nitions later in the course.) Given an open compact subgroupK ⊂ G(Af ), the quotient
G(Af )/K is a discrete countably in�nite set with transitive G(Af )-action. Hence, the
product X × G(Af )/K is a countable union of copies of X. We consider the diagonal
action

G(Q) ⟳ X ×G(Af )/K.
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If K is small enough then the G(Q)-action is free. (The technical term is �neat� and we
will get to know it later in the course.) It is also properly discontinuous, so we can form
the quotient complex manifold

ShK(G,X)(C) := G(Q)\
(
X ×G(Af )/K

)
. (1.6)

At this point, we have de�ned the complex points of the Shimura variety for Shimura
datum (G,X) and level K as a complex manifold. The theorem of Baily�Borel states that
there is a unique way to endow it with an algebraic structure.

Theorem 1.3 (Baily�Borel, see [12, Corollary 3.16]). There exists a quasi-projective
complex variety ShK(G,X)C such that there exists an isomorphism of complex manifolds

ShK(G,X)C(C)
∼→ ShK(G,X)(C). This variety is unique up to isomorphism.

Remark 1.4. Simple examples of non-unique algebraic structures on complex manifolds
can be found in [7].

Example 1.5. Let us again consider the case G = GL2 and let us give an example of a

connected component of (1.6). Let Ẑ =
∏

p<∞ Zp be the subring of integral elements of
Af . For n ≥ 1, consider the kernel

K(n) = ker
(
GL2(Ẑ) −→ GL2(Z/nZ)

)
which is an open compact subgroup of G(Af ). It is small enough (in the above sense) if
n ≥ 3. The intersection

Γ(n) := GL2(Q) ∩K(n)

is the classical congruence subgroup

Γ(n) =

{
γ ∈ GL2(Z)

∣∣∣∣ γ ≡ (
1

1

)
mod n

}
.

The quotients Γ(n)\H+ and Γ(n)\H− will be two of the connected components of the
complex manifold ShK(n)(GL2,H±).

1.7. Shimura varieties over number �elds. Finally, one descends ShK(G,X) to a
number �eld. Starting from a Shimura datum (G,X), Deligne de�nes a number �eld
E ⊂ C called the re�ex �eld. In a suitable sense, it is the smallest �eld over which the
conjugacy class X is de�ned.

Example 1.6. Consider the three examples from �1.5.

• If G = GL2 or more generally G = GSp2g, then the re�ex �eld is Q.
• If G = U(V ) is a non-de�nite unitary group for an imaginary-quadratic �eld K/Q,
then the re�ex �eld is the sub�eld E ⊂ C that is isomorphic to K.

Deligne [2] gave a de�nition of canonical model of ShK(G,X)C over E. It is a variety
ShK(G,X) over Spec(E) together with an isomorphism

C⊗E ShK(G,X)
∼−→ ShK(G,X)C

that satis�es a certain reciprocity law for complex multiplication points. Deligne proves
that the canonical model ShK(G,X) is unique up to isomorphism if it exists.

Theorem 1.7 (Borovoi, Milne [10]). For every Shimura datum, the canonical model exists.

De�nition 1.8. Let (G,X) be a Shimura datum with re�ex �eld E and let K ⊂ G(Af )
be a su�ciently small level subgroup. The Shimura variety of level K attached to (G,X)
is the canonical model ShK(G,X) from Theorem 1.7.
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Remark 1.9. Historically, the study of Shimura varieties started with Shimura in the
1960s. He �rst considered moduli spaces of abelian varieties with Polarization, Endomor-
phisms, and Level structure (PEL). These are the Shimura varieties de�ned by PEL type
Shimura data.

Shimura also studied several non-PEL cases and de�ned the corresponding Shimura
varieties as varieties over number �elds. Deligne [2] gave a group-theoretic framework for
Shimura's work. His de�nition in terms of a reciprocity law for complex multiplication
points is extrapolated from the Shimura�Taniyama reciprocity law for abelian varieties
with complex multiplication. Deligne also constructed the canonical model for abelian
type Shimura varieties. The proof of existence in the general case was completed by Milne
based on ideas of Borovoi. See here for a short summary of the history by Milne [11, �6].

Example 1.10. Consider the two cases from Example 1.6. The unitary group U(V ) has
no PEL type Shimura data. For the group GSp2g, there exists a PEL type Shimura datum
(GSp2g, X). Consider a principal congruence level subgroup

K(n) = ker
(
GSp2g(Ẑ) −→ GSp2g(Z/nZ)

)
with n ≥ 3. Then the canonical model ShK(n)(GSp2g, X) can be described as a moduli
space of principally polarized abelian varieties with level-n-structure. For example, if we
look at C-points and specialize to GL2, then we obtain

ShK(n)(GL2, X)(C) ∼−→ {(E, η)/C}/ ∼ (1.7)

where the right hand side denotes the set of isomorphism classes of pairs (E, η) with

• E an elliptic curve over C,
• η : (Z/nZ)⊕2 ∼−→ E[n] a choice of basis for the n-torsion.

The datum η is called a level structure for E. Proving (1.7) will be one of our �rst goals.

1.8. Further topics. We will say more about this when the time comes. For now, let us
start looking at Shimura varieties in detail.
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Part 1. The Shimura variety of GL2

2. The upper half plane

In Example 1.1, we have introduced the action of GL2(Q) on the union of upper and
lower half plane H± = C\R. Recall that it is given by(

a b
c d

)
· τ =

aτ + b

cτ + d
.

In Example 1.5, we have seen that we are especially interested in actions by subgroups
such as GL2(Z) and Γ(n). Our aim in this section is to give a de�nition of such arithmetic
subgroups and to prove properties about their action on H±.

Note that elements of GL2(Z) have determinant 1 or −1, and that the elements of
determinant −1 interchange upper and lower half plane. So we will focus on the action of
SL2(Q) on the upper half plane H ⊂ H±.

2.1. The fundamental domain. Let F be the area de�ned by

F =
{
τ ∈ H

∣∣∣ |τ | ≥ 1 and − 1

2
≤ Re(τ) ≤ 1

2

}
. (2.1)

Its interior F◦ is the open subset where |τ | > 1 and −1/2 ≤ Re(τ) ≤ 1/2.

Figure 1. The area F is depicted in grey. The remaining areas show
translates of F under the action of the elements S and T de�ned in (2.3).
By Proposition 2.1 and Remark 2.2, these translates cover all of H. The
picture is taken from [14, �VII].

Proposition 2.1. The set F is a fundamental domain for the action of SL2(Z)/{±1} on
H. That is, it has the following two properties.

(1) For every τ ∈ H, there exists γ ∈ SL2(Z) such that γτ ∈ F .
(2) F◦ ∩ γF◦ = ∅ whenever γ /∈ {±1}.

Proof. Fix τ ∈ H and let γ =
(
a b
c d

)
∈ SL2(Z) be any element. By direct computation, we

see that

Im(γτ) = Im

(
(aτ + b)(cτ − d)
|cτ + d|2

)
=

(ad− bc)Im(τ)

|cτ + d|2
=

Im(τ)

|cτ + d|2
. (2.2)

The denominator |cτ+d|2 de�nes a positive de�nite quadratic form in (c, d) ∈ Z2. It hence
takes a minimum on the set of (c, d) that occur as the bottom row of an element of SL2(Z).
(These are precisely the (c, d) with gcd(c, d) = 1.) So we see that {Im(γτ) | γ ∈ SL2(Z)}
has a maximum.
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Let γ be such that Im(γτ) is maximal. Consider the two matrices

S =

(
1

−1

)
, T =

(
1 1

1

)
(2.3)

and observe that they act as the very simple transformations

Sτ = −1

τ
, T τ = τ + 1. (2.4)

In particular, acting with a suitable power Tm,m ∈ Z, we can translate γτ to assume it lies
in the strip−1/2 ≤ Re(z) ≤ 1/2. Then also |γτ | ≥ 1 because otherwise Im(Sγτ) > Im(γτ)
would contradict the maximality of Im(γτ). This proves statement (1) of the proposition.

We now prove statement (2). Assume that τ and γτ both lie in F◦, our aim being to
show that γ ∈ {±1}. After possibly replacing the pair (γ, τ) by (γ−1, γτ), we can assume
that Im(γτ) ≥ Im(τ). Considering again (2.2), this means that |cτ + d|2 ≤ 1.

Clearly, we now have c = 0 because |cτ + d| > 1 for every c ̸= 0 (use τ ∈ F◦). This
means that γ is of the form

γ = ±
(
1 m

1

)
for some m ∈ Z. Since both τ and γτ have real part in (−1/2, 1/2), the only possibility
is m = 0. This �nishes the proof. □

Remark 2.2. One can show that the matrices S and T from (2.3) generate SL2(Z). That
is, every element of SL2(Z) can be written as a product of the three elements S, T and
T−1. The proof is not di�cult and can be found in [14, �VII.1, Theorem 2].

2.2. Arithmetic subgroups of SL2(Q). We now de�ne arithmetic subgroups of SL2(Q).

De�nition 2.3. (1) For n ≥ 1, we de�ne the principal congruence subgroup Γ(n) by

Γ(n) = {γ ∈ SL2(Z) | γ ≡ 1 mod n}.

(2) We call a subgroup Γ ⊂ SL2(Q) arithmetic if it contains a principal congruence group
Γ(n) with �nite index.

The group SL2 has a very interesting property which will come up again later. Namely,
for each n ≥ 1, the projection map

SL2(Z) −→ SL2(Z/nZ) (2.5)

is surjective. This is not hard to show directly, but also follows from Theorem 3.15 (2)
below.

Example 2.4. By the surjectivity we just stated for SL2, the image of the projection
map GL2(Z) → GL2(Z/nZ) is the set of matrices with determinant ±1. In particular,
this projection is not surjective when n = 5 or n ≥ 7.

In the context of De�nition 2.3, the surjectivity of (2.5) implies that Γ(n)⊴SL2(Z) is a
normal subgroup of index equal to |SL2(Z/nZ)|. In particular, if a group Γ contains Γ(n)
with �nite index, then it also contains all Γ(mn) with �nite index.

Proposition 2.5. Let Γ be an arithmetic subgroup.

(1) There exists a lattice Λ ⊂ Q2 such that Γ ⊆ SL(Λ).

(2) More precisely, there exist an integer n and an element g ∈ GL2(Q), det(g) > 0, such
that

Γ(m) ⊆ gΓg−1 ⊆ SL2(Z).
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Proof. The two statements are proved by very simple and universal arguments. First, by
assumption on Γ, there exists an integer n such that Γ(n) ⊆ Γ with �nite index. Let
γ1, . . . , γr be representatives for the cosets Γ/Γ(n). Then Γ stabilizes the lattice

Λ :=
r∑

i=1

γi · Z2.

Indeed, since γZ2 = Z2 for every γ ∈ Γ(n), we can also write Λ as

Λ =
∑
γ∈Γ

γ · Z2,

and from this second expression the Γ-stability is clear. This means that Γ ⊆ SL(Λ) which
proves statement (1).

Let λ1, λ2 ∈ Λ be a basis as Z-module. Viewing λ1 and λ2 as column vectors, the base
change matrix g = (λ1 λ2) lies in GL2(Q) and has the property gZ2 = Λ. Changing λ1
to −λ1 if necessary, we may assume det(g) > 0. Then SL2(Z) = g−1 SL(Λ)g and hence
gΓg−1 ⊆ SL2(Z).

We still need to show that gΓg−1 contains a principal congruence subgroup. This is the
content of the next lemma which completes the proof. □

Lemma 2.6. Let Γ ⊂ SL2(Q) be an arithmetic subgroup and g ∈ GL2(Q). Then gΓg−1

is again an arithmetic subgroup.

Proof. Let d be the least common multiple of all the denominators of all the entries of
g and g−1. Then, if A ∈ d2mM2(Z) is an integer matrix divisible by d2m, we �nd
g−1Ag ∈ mM2(Z). This shows that g−1Γ(d2m)g ⊆ Γ(m) which is equivalent to

Γ(d2m) ⊆ gΓ(m)g−1. (2.6)

Now, for the given Γ, choose n with Γ(n) ⊆ Γ. Conjugating this relation by g and using
(2.6), we �nd Γ(d2n) ⊆ gΓg−1 which proves that gΓg−1 is again arithmetic. □

In other words, Proposition 2.5 shows that the arithmetic subgroups in SL2(Q) are
precisely the GL2(Q)-conjugates of groups between SL2(Z) and some Γ(n).

2.3. Stabilizers.

De�nition 2.7. We say that an arithmetic subgroup Γ ⊂ SL2(Q) is neat if it is torsion
free.

Proposition 2.8. Let Γ be a neat arithmetic subgroup of SL2(Q). Then Γ acts with trivial
stabilizers on H. That is, if γτ = τ for some γ ∈ Γ and τ ∈ H, then γ = 1.

Proof. We have seen in (1.4) that the stabilizer of i ∈ H in GL2(R) is a copy of C×. The
unit circle C1 ⊂ C× is compact and equals the intersection C× ∩ SL2(R). For a general
point τ ∈ H, we can write τ = g · i for some g ∈ SL2(R):(

1 b
1

)(
a1/2

a−1/2

)
· i = ai+ b.

The stabilizers Si and Sτ of τ and i in SL2(R) are then related by Sτ = gSig
−1. In this

way, we see that for every τ ∈ H, the stabilizer Sτ ⊂ SL2(R) is isomorphic to C1, in
particular compact.

Assume that γτ = τ , where γ ∈ Γ and τ ∈ H. This is equivalent to γ ∈ Γ ∩ Sτ . Since
Γ ⊂ SL2(R) is a discrete subgroup, the intersection Γ ∩ Sτ is a discrete subgroup of Sτ .
Since the discrete subgroups of C1 are all �nite cyclic (generated by a root of unity), and
since Γ is torsion-free by assumption, we see that Γ ∩ Sτ = {1}. Hence γ = 1, and the
proof is complete. □
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The next proposition provides a simple criterion for detecting neatness.

Proposition 2.9. For all n ≥ 3, the principal congruence subgroup Γ(n) is neat. In
particular, if Γ ⊆ Γ(n) is an arithmetic subgroup, then Γ is neat.

Proof. The minimal polynomial Φd(T ) of a primitive d-th root of unity has degree φ(d)
(Euler φ-function). Recall that Φd(T ) is called the d-th cyclotomic polynomial and that

Tm − 1 =
∏
d|m

Φd(T )

because the roots of Tm − 1 are precisely the m-th roots of unity, and each such root of
unity is a primitve d-th root of unity for a unique divisor d | m.

The only values for d such that φ(d) ≤ 2 are 1, 2, 3, 4, and 6. These are precisely the
values for d such that Q(ζd) has degree ≤ 2 over Q.

Let n ≥ 1 and let γ ∈ SL2(Q) be a torsion element, say γm = 1. Then the minimal
polynomial of γ divides Tm − 1. We know that the minimal polynomial and the char-
acteristic polynomial of a matrix have the same irreducible factors. So the characteristic
polynomial P (T ) of γ is a product of Φd(T ) with d | m. The only possibilities for P (T )
are hence1

(T − 1)2, (T + 1)2, (T − 1)(T + 1), T 2 + 1, T 2 + T + 1, and T 2 − T + 1. (2.7)

If n ≥ 3 and if γ is integral with γ ≡ 1 mod n, then also P (T ) ≡ (T − 1)2 mod n,
leaving P (T ) = (T − 1)2 as the only possibility. This means that γ is either equal to 1
or GL2(Q)-conjugate to ( 1 1

1 ) (Jordan normal form). But γ is also a torsion element by
assumption, so γ = 1 is the only possibility. □

Exercise 2.10. Extend the argument of the previous proof to GLn. That is, given n ≥ 1,
�nd an integer m ≥ 1 such that for γ ∈ GLn(Z),

γ ≡ 1 mod m =⇒ γ non-torsion.

Conclusion 2.11. In this lecture, we saw the de�nition of neat arithmetic subgroups of
SL2(Q). We have seen in Proposition 2.8 that such groups act freely on H. So the quotient
Γ\H will be a Riemann surface and the quotient map

H −→ Γ\H (2.8)

a holomorphic covering map in the sense of topology. We have seen in Proposition 2.5
that, in order to study Γ\H, we may always assume Γ ⊆ SL2(Z). Then we can think of
Γ\H as being glued from �nitely many SL2(Z)-translates of the fundamental domain F
as in Figure 2.1 along their edges.

1The product (T −1)(T +1) cannot actually occur, of course, because det(γ) = 1 for γ ∈ SL2(Q). This
does not a�ect the argument, though.
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3. Adelic double quotients

In this lecture, we study the adelic double quotients GL2(Q)\(H± ×GL2(Af )/K) and
relate them to the quotients Γ\H from the previous lecture. We will �rst revisit the
de�nition of the adeles and explain the de�nition of GL2(Af ) as a topological group in
more detail. In fact, we will use this opportunity to also study groups of the form G(Af )
more generally.

3.1. The adeles. We begin by de�ning the ring of integral adeles. It is the pro�nite

ring given by2 Ẑ := lim Z/nZ. The transition maps here are given by the projections
Z/mZ→ Z/nZ, whenever m | n. Concretely, we have

Ẑ =
{
(x1, x2, . . .) ∈

∏
n≥1

Z/nZ
∣∣∣ xdn ≡ xn mod n for all d, n ≥ 1

}
.

Recall that the Chinese remainder theorem identi�es Z/nZ ∼→
∏

p Z/pvp(n)Z. If we apply
this identi�cation to each term of the limit, then we obtain an isomorphism

Ẑ ∼−→
∏
p

Zp, (x1, x2, . . .) 7−→
(
(x1, xp, xp2 , . . .)

)
p
. (3.1)

We endow each Zp with the usual p-adic topology and their product with the product
topology. Then (3.1) is an isomorphism of topological rings.

De�nition 3.1. The ring of �nite adeles is de�ned by Af := Q⊗Z Ẑ. Since Ẑ is torsion-

free, we can view it as a subring Ẑ ⊂ Af . We endow Af with the topology such that Ẑ is
an open subring.

Let us unravel this de�nition. First, on the level of rings, Af is the ring of fractions

x/m with x ∈ Ẑ and m ≥ 1, where the usual rules of arithmetic apply. Using (3.1), we
can more explicitly describe it as the subring

Af =
{
(xp) ∈

∏
p

Qp

∣∣∣ xp ∈ Zp for almost all p
}
.

Now we describe the topology. In Ẑ, a neighborhood basis of 0 is given by all the kernels

of the projections Ẑ→ Z/nZ. These are precisely the ideals nẐ. Under the isomorphism
(3.1), they are the subsets of the form∏

p∈S
pmpZp ×

∏
p/∈S

Zp

where S is a �nite set of primes and (mp)p∈S a tuple of non-negative integers. Such sets
forming a neighborhood basis of 0 means that the sets{

x+ nẐ
∣∣ x ∈ Ẑ, n ≥ 1

}
(3.2)

give a basis of the topology on Ẑ. Declaring Ẑ ⊂ Af an open subring then simply means

that the sets nẐ also form a neighborhood basis of 0 in Af . Equivalently, the sets{
x+ nẐ

∣∣ x ∈ Af , n ≥ 1
}

(3.3)

provide a basis for the topology on Af .

De�nition 3.2. The ring of adeles is de�ned as the product A := Af × R endowed with
the product topology.

Proposition 3.3. The subring Q ⊂ A is discrete.

2We use lim and colim to denote the limit and the colimit. In other references, these might be called
lim
←−

and lim
−→

.
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Proof. By de�nitions, the product U = Ẑ×(−1, 1) is an open subset of A. The intersection
U ∩Q consists of those rational numbers that lie in Z = Ẑ∩Q and in the interval (−1, 1).
In other words, U ∩Q = {0}. Thus, {0} ⊂ Q is an open subset for the subspace topology.
By additive translation invariance of the topology (A is a topological ring), the same
argument applies for all rational numbers. This shows that the subspace topology on Q
is the discrete topology as claimed. □

Let F/Q be a �nite extension. The adeles of F can be de�ned in the same way as for
Q. First, we de�ne the integral adeles with pro�nite topology

ÔF := lim
a⊆OF

OF /a
∼−→

∏
p

OF,p. (3.4)

The we tensor by Q over Z, or equivalently by F over OF , to de�ne the �nite adeles:

AF,f := Q⊗Z ÔF

∼−→
{
(xp) ∈

∏
p

Fp

∣∣∣ xp ∈ OF,p for almost all p
}
.

(3.5)

Again, the topology on AF,f is de�ned by declaring ÔF to be an open subring. Finally,
we de�ne the adeles as the product

AF := AF,f × (R⊗Q F )
∼−→ AF,f ×

∏
σ:F→R

R ×
∏

{σ,σ}:F→C

C. (3.6)

Here, the real factors have their real vector space topology, and the last two products are
over the real (resp. complex) places of F .

Recall that OF is a free abelian group of rank equal to d = [F : Q]. Let α1, . . . , αd be a

Z-module basis of OF . Such a choice provides isomorphisms of Ẑ-, Af -, resp. A-modules

Ẑn ∼−→ OF ⊗Z Ẑ, An
f
∼−→ F ⊗Q Af , An ∼−→ F ⊗Q A. (3.7)

We endow Ẑn, An
f and An with the product topology and use the isomorphisms in (3.7) to

de�ne from this the topology on the three tensor products. This topology is independent
of the choice of α1, . . . , αd.

Remark 3.4. The previous de�nition is a general principle. Let R be a topological
ring and let M be a �nite free R-module. Any choice of R-basis α1, . . . , αd de�nes an
isomorphism Rd ∼→M and, in this way, endows M with a topology.

Any two such isomorphisms di�er by an element of GLd(R). Since the action of every
g ∈ GLd(R) on R

d is continuous, the topology is independent of the chosen basis.

Proposition 3.5. Multiplication de�nes isomorphisms of topological rings

OF ⊗Z Ẑ ∼−→ ÔF , F ⊗Q Af
∼−→ AF,f , F ⊗Q A ∼−→ AF .

Proof. Every ideal a ⊆ OF contains an ideal nOF with n ∈ Z≥1. So we can rewrite (3.4)

as ÔF = limOF /nOF . Having chosen α1, . . . , αd, we obtain

ÔF = lim
( d⊕

i=1

Z/nZ · αi

)
∼−→

d⊕
i=1

(
limZ/nZ

)
· αi

∼−→
d⊕

i=1

Ẑ · αi.
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This shows that OF ⊗Z Ẑ ∼−→ ÔF as topological rings. The statements for AF,f and AF

follow from this. □

Corollary 3.6. Let F/Q be a �nite extension. Then F ⊂ AF is discrete.

Proof. Since Q is discrete in A, we have that Qn is discrete in An. Choosing a Q-basis
α = (α1, . . . , αd) for F , we obtain a commutative square of the form

Qn � � //

α

An

α

F �
� // AF .

By Proposition 3.5, the right vertical identi�cation is a homeomorphism. Hence we obtain
that F is discrete in AF . □

3.2. Groups of the form G(Af ). Let us formulate the problem more generally.

Question 3.7. Let X be an a�ne variety3 over Q and let R be a topological Q-algebra.
We assume that points of R are closed. For example, R could be R, C, Qp, Af or A. How
to de�ne the topological space X(R) in a natural way?

The answer is very simple. Let us write AN = SpecQ[t1, . . . , tN ] for a�ne N -space over
Q to avoid confusion with the adele notation. We endow AN (R) = RN with the product
topology.

Let f1, . . . , fm ∈ Q[t1, . . . , tN ] be polynomials and let X = V (f1, . . . , fm) ⊆ AN be their
vanishing locus. Then X(R) ⊆ RN is a closed subset because it equals the intersection
∩mi=1f

−1
i (0), and we endow it with the subspace topology.

De�nition 3.8. LetX be an a�neQ-variety. Choose a presentation φ : X
∼→ V (f1, . . . , fm)

as above. The topology on X(R) is de�ned as the subspace topology with respect to
φ(R) : X(R) ↪→ RN .

Lemma 3.9. This topology on X(R) is independent of the choices of N , (f1, . . . , fm) and
φ.

Proof. Assume that we are given two a�ne varieties V (f1, . . . , fm1) ⊆ AN1 as well as
V (g1, . . . , gm2) ⊆ AN2 . Assume that

φ : V (f1, . . . , fm1)
∼−→ V (g1, . . . , gm2)

is an isomorphism of Q-varieties. Then φ and ψ = φ−1 lift to morphisms Φ : AN1 → AN2

and Ψ : AN2 → AN1 . The induced maps

RN1
Φ
⇄
Ψ

RN2

are continuous because they are given by polynomials. Hence their restrictions φ and ψ
are continuous as well. Since ψ = φ−1, this shows that φ is a homeomorphism. □

Example 3.10. Consider the group variety GLn. One possible presentation as a closed
subset of an a�ne space is given by

GLn
∼−→ V

(
1− t · det

(
(tij)

n
i,j=1

))
⊂ A×Spec(Q) An2

g = (tij)
n
i,j=1 7−→ (det(g)−1, g).

For example, if n = 1, we recover the closed immersion4

Gm ↪−→ A2, t 7−→ (t−1, t).

3More generally, an a�ne �nite type Q-scheme.
4Gm is just another notation for GL1. The notation symbolizes multiplicative group.
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According to De�nition 3.8, the topology on GLn(Af ) is then given as the subspace topol-
ogy with respect to

GLn(Af ) ↪−→ Af ×Mn(Af ), g 7−→ (det(g)−1, g).

The product Ẑ×Mn(Ẑ) is an open subset on the right hand side. So the intersection

GLn(Ẑ) = GLn(Af ) ∩ (Ẑ×Mn(Ẑ))

is an open subset of GLn(Af ). (The elements of GLn(Ẑ) are precisely those elements of

GLn(Af ) ∩Mn(Ẑ) whose inverse determinant again lies in Ẑ.) As a closed subset of the

pro�nite set Ẑ×Mn(Ẑ), GLn(Ẑ) is again pro�nite. In fact, we have

GLn(Ẑ)
∼−→ lim

m≥1
GLn(Z/mZ)

as topological group. The principal congruence subgroups

K(m) := ker
(
GLn(Ẑ) −→ GLn(Z/mZ)

)
form a neighborhood basis of 1 in GLn(Af ).

Example 3.11. We always view A×f with the topology coming from A×f = Gm(Af ). Then

the inclusion map A×f → Af is continuous because it is induced from the morphism of

varieties Gm → A, t 7→ t. But it is not an open immersion. For example, Ẑ× is open in
A×f , but not in Af .

Exercise 3.12. Prove the claim in the previous example. That is, show that none of the

open subsets 1 + nẐ ⊆ Ẑ, which form a neighborhood basis of 1 ∈ Ẑ, is contained in Ẑ×.

Example 3.13. Let G be a general linear algebraic group over Q. There always exist some
N ≥ 1 and a closed immersion G ↪→ GLN . Then G(Af ) ⊆ GLN (Af ) has the subspace
topology. In particular, the intersections G(Af ) ∩ K(m) with all congruence subgroups
form a neighborhood basis of 1 ∈ G(Af ).

This applies, for example, to the standard representations

SL2 ↪→ GL2, Sp2g ↪→ GL2g, GSp2g ↪→ GL2g .

Let V be a quadratic Q-vector space. Then it applies to the closed immersions

SO(V ) ↪→ GL(V ), O(V ) ↪→ GL(V ).

Remark 3.14. For local �elds k, such as k ∈ {R,C,Qp}, the situation is more straight-
forward in the following sense. If X ↪→ Y is an open immersion of k-varieties, then
X(k)→ Y (k) is an open immersion with respect to the topologies from De�nition 3.8. In
particular, the topology on X(k) from De�nition 3.8 agrees with the subspace topology
in Y (k).

This remark applies, for example, to

GLn(R) ⊂ Mn(R) and GLn(Qp) ⊂ Mn(Qp).

3.3. General adelic double quotients. Let us begin with a general theorem which we
will not prove.

Theorem 3.15 ([12, Theorem 4.16]). (1) Let G/Q be a connected reductive algebraic
group. Then, for every compact open subgroupK ⊂ G(Af ), the double quotient G(Q)\G(Af )/K
is �nite.

(2, Strong approximation) Let G/Q be a connected, simply connected semi-simple group of
non-compact type. Then G(Q) is dense in G(Af ). In particular, for every compact open
subgroup K ⊂ G(Af ),

G(Af ) =
{
γ · k | γ ∈ G(Q), k ∈ K

}
.
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As our �rst application, we obtain a more concrete description of the adelic double
quotients that make up the complex points of a Shimura variety (1.6). Let (G,X) be a
Shimura datum and let K ⊂ G(Af ) be a level subgroup. In particular, G is a connected
reductive group over Q, so Theorem 3.15 (1) applies. So we �nd �nitely many double
coset representatives g1, . . . , gr ∈ G(Af ),

G(Af ) =
r⊔

i=1

G(Q)giK. (3.8)

Each of the sets on the right hand side of (3.8) is G(Q)-stable. Moreover, G(Q) acts
transitively on the cosets G(Q)giK/K, and the stabilizer of the coset giK ∈ G(Q)giK/K
is the subgroup

Γi := G(Q) ∩ giKg−1i .

So we obtain

G(Q)\(X ×G(Af )/K) =
r⊔

i=1

G(Q)\(X ×G(Q)giK/K)

∼−→
r⊔

i=1

Γi\X × {giK}.

(3.9)

If K is small enough, which we will make precise for GL2 in a minute, then each Γi is
torsion-free and acts without stabilizers on X. Each quotient Γi\X is then a complex
manifold in the same way as we saw before in Conclusion 2.11.

Exercise 3.16. Work out (3.9) for yourself. For example, �rst prove the following variant.
Let H be a group acting on sets X and Y . Let Y = ⊔i∈IG · yi be the decomposition of Y
into orbits and let Γi be the stabilizer of yi in H. Then

H\(X × Y )
∼−→

⊔
i∈I

Γi\X.

Specialize to the situation H = G(Q) and Y = G(Af )/K.

Exercise 3.17. The group SLn is connected, simply connected, semi-simple and of non-
compact type, so SLn(Q) ⊂ SLn(Af ) is dense (Strong approximation, see Theorem 3.15
(2)). Using this property, show that

SLn(Z) −→ SLn(Z/mZ)

is surjective for all m ≥ 1. In particular, this shows the surjectivity of (2.5).

3.4. Back to GL2. The description in (3.9) is still quite abstract. We now want to make
it completely explicit for congruence subgroups of GL2. Let us begin by studying Gm.

Proposition 3.18. Let K(m) = ker
(
Ẑ× → (Z/mZ)×

)
be the m-th congruence subgroup

of A×f . Then there is an isomorphism

Q×>0\A
×
f /K(m)

∼−→ (Z/mZ)×. (3.10)

Proof. Let x = (xp)p ∈ A×f be an element. Here, the component xp lies in Q×p , and almost

all components xp even lie in Z×p . For each prime p, let vp : Q×p → Z denote the valuation
normalized by vp(p) = 1. Take the vector of valuations of all the entries of x:

(ep)p, ep = vp(xp).
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Only �nitely many of the ep are non-zero. There is a rational number in Q>0 with the

same valuations, namely t =
∏

p p
ep . So t−1x lies in Ẑ× which shows that every double

coset in (3.10) has a representative in Ẑ×. Purely formally, we now obtain

Q×>0\A
×
f /K(m)

∼−→
(
Q×>0 ∩ Ẑ×

)
\Ẑ×/K(m). (3.11)

The rational number t is, in fact, uniquely determined which re�ects that Q×>0∩Ẑ× = {1}.
So (3.11) simpli�es to Ẑ×/K(m), which is isomorphic to (Z/mZ)× as claimed. □

We write GLn(Q)>0 for the subgroup of elements of GLn(Q) with positive determinant.

Proposition 3.19. Let K ⊂ GLn(Af ) be an open compact subgroup. The determinant

map det : GLn(Af )→ A×f induces a bijection

det : GLn(Q)>0\GLn(Af )/K
∼−→ Q×>0\A

×
f /det(K). (3.12)

Proof. The group SLn is connected, simply connected, semi-simple and of non-compact
type, so SLn(Q) ⊂ SLn(Af ) is dense (Strong approximation, see Theorem 3.15 (2)). We
will use this property freely.

Consider the determinant map in (3.12). It is clearly surjective because already the
map det : GLn(Af )→ A×f is surjective. So our task is to prove that (3.12) is injective.

The source in (3.12) is only a set, so we cannot argue with kernels. Instead, we consider
two elements g1, g2 ∈ GLn(Af ) with the same image, meaning that

det(g1) ∈ Q×>0 det(g2) det(K). (3.13)

Our task is to show that g1 ∈ GLn(Q)g2K.
First, observe that det : GLn(Q)>0 → Q×>0 is surjective. So we �nd elements h ∈

GLn(Q)>0 and k ∈ K such that det(g1) = det(hg2k). So after replacing g2 by hg2k, we
may assume det(g1) = det(g2).

Next, we consider the conjugate group g2Kg
−1
2 . Strong approximation for SLn implies

that

SLn(Af ) = SLn(Q) · (g2Kg−12 ∩ SLn(Af )).

Hence, there are h′ ∈ SLn(Q) and k′ ∈ K ∩ SLn(Af ) with

g1g
−1
2 = h′g2k

′g−12 .

This is equivalent to g1 = h′g2k
′, showing that the double cosets of g1 and g2 are equal as

claimed. □

Corollary 3.20. Let K(m) ⊂ GL2(Af ) be the m-th congruence subgroup. There is a
bijection of connected components

π0
(
GL2(Q)\(H± ×GL2(Af )/K(m))

) ∼−→ (Z/mZ)×. (3.14)

Moreover, the connected components are all of the form Γ\H with Γ = GL2(Q)>0 ∩
gK(m)g−1 for some element g ∈ GL2(Af ).

Proof. The two connected components of H± are interchanged by the elements of negative
determinant in GL2(Q). Hence, we obtain

π0
(
GL2(Q)\(H± ×GL2(Af )/K(m))

) ∼−→ π0
(
GL2(Q)>0\(H×GL2(Af )/K(m))

)
∼−→ GL2(Q)>0\GL2(Af )/K(m).

(3.15)
Here, the second isomorphism simply used that H is connected. Next, observe that

L := det(K(m)) = ker(Ẑ× −→ (Z/mZ)×)
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is the m-th congruence subgroup in A×f . So, by Proposition 3.19, the determinant allows

to rewrite (3.15) as

det : GL2(Q)>0\GL2(Af )/K(m)
∼−→ Q×>0\A

×
f /L.

By Proposition 3.18, the last expression can be identi�ed with (Z/mZ)× as claimed.
The �nal statement (each connected component being isomorphic to some Γ\H with Γ

of the form GL2(Q)>0 ∩ gK(m)g−1) is a special case of the decomposition in (3.9), except
that we have already replaced (H±,GL2(Q)) by (H,GL2(Q)>0). □

Let us go further and prove a criterion that ensures that all the occurring Γ are torsion
free. The arguments will be similar to the ones we saw in �2.3.

Proposition 3.21. For any m ≥ 3 and g ∈ GL2(Af ), the intersection Γ = GL2(Q) ∩
gK(m)g−1 is torsion free.

Proof. Let γ be an element of K(m). Then, since K(m) ⊆ GL2(Ẑ), the characteristic

polynomial Pγ(T ) lies in Ẑ[T ]. Since γ ≡ 1 mod m, we even know Pγ(T ) ≡ (T − 1)2 mod
m. In general, for every n ≥ 1 and any ring R, the characteristic polynomial of an element
from GLn(R) is invariant under conjugation. So, in our setting, the same properties hold
for Pγ(T ) for γ ∈ gK(m)g−1.

Assume that γ ∈ Γ = GL2(Q) ∩ gK(m)g−1. Then, the characteristic polynomial of γ
has rational coe�cients, and hence lies in the intersection

Q[T ] ∩
(
(T − 1)2 + nẐ[T ]

)
.

This means that Pγ(T ) ∈ Z[T ] and Pγ(T ) ≡ (T − 1)2 mod m.
If γ is a torsion element, then we have already seen during the proof of Proposition 2.9

that Pγ(T ) comes from the list (2.7). By the congruence condition we just established,
the only possibility is Pγ(T ) = (T − 1)2. The matrix ( 1 1

1 ) is not torsion, so cannot be
the Jordan normal form of γ. We conclude that γ = 1, showing that Γ is torsion-free as
claimed. □

Conclusion 3.22. Let us come back to the situation of Corollary 3.20. Assume that
m ≥ 3. Then the connected components of

GL2(Q)\
(
H± ×GL2(Af )

)
are in natural bijection with (Z/mZ)×. Each connected component is of the form Γ\H for
a torsion free arithmetic subgroup Γ ⊆ SL2(Q).
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4. Group schemes

Our next aim is to endow the complex manifolds ShK(GL2,H±)(C) with an algebraic
structure and to even de�ne them over Q (see 1.7). This relies on their description as
moduli spaces of elliptic curves:

De�nition 4.1. Let k be a �eld. An elliptic curve over k is a proper, smooth, connected
and 1-dimensional k-group scheme.

Later in the course, we will also consider other Shimura varieties and describe them as
moduli spaces of abelian varieties:

De�nition 4.2. An abelian variety over k is a proper, smooth and connected k-group
scheme.

In this lecture, we will �rst discuss some background on group schemes. This will also
be useful for talking about groups like GLn, GSp2g etc. which we have secretly already
considered as group schemes over SpecZ or SpecQ in previous lectures. In general, group
schemes are also an interesting topic in itself and come up in many areas of algebra.

Recommended reading closely related to our course: My lecture notes on moduli
spaces of elliptic curves [9]. Parts of our discussion here are taken from [9, �2].

General reference on algebraic groups: Milne's book [13], especially �1 about basic
de�nitions.

4.1. Basic de�nitions. We give the de�nition over a general base S, but the case to keep
in mind is S = Spec(k) for a �eld k.

De�nition 4.3. Let S be a scheme. A group scheme over S is a pair (G,m) that consists
of an S-scheme G and an S-scheme morphism (called multiplication morphism)

m : G×S G −→ G

such that for every S-scheme T , the resulting map on T -valued points

m(T ) : G(T )×G(T ) −→ G(T )

makes G(T ) into a group. We call G commutative if G(T ) is a commutative group for
every T .

Observe that for every morphism u : T ′ → T of S-schemes, the diagram

G(T )×G(T )
m(T ) //

u∗×u∗
��

G(T )

u∗

��
G(T ′)×G(T ′)

m(T ′) // G(T ′)

(4.1)

commutes which means that u∗ : G(T )→ G(T ′) is a group homomorphism. Furthermore,
if (G,m) is a group scheme over S, then the Yoneda Lemma implies the existence of two
additional S-scheme morphisms:

e : S −→ G, (neutral element section)

i : G −→ G, (inversion morphism).
(4.2)

The �rst one is simply the neutral element e ∈ G(S) of the group G(S). Given u :
T → S, the pullback u∗(e) = e ◦ u ∈ G(T ) is the neutral element of G(T ). The second
one is characterized as the unique morphism that provides the inverse in all the groups
{G(T )}T→S :

i(T ) : G(T ) −→ G(T ), g 7−→ g−1.
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The datum (G,m, e, i) satis�es the group axioms in a scheme sense, meaning that the
three diagrams

S ×S G
e×id // G×S G

m
{{

G,

(4.3)

G×S G

��

id×i // G×S G

m

��
S

e // G,

G×S G×S G
m×id //

id×m
��

G×S G

m

��
G×S G

m // G.

(4.4)

all commute. In fact, one may also reverse the above logic and obtains the more classical
de�nition of a group scheme over S: It is the same as an S-scheme G together with a
morphismm : G×SG→ G such that there exist morphisms e : S → G and i : G→ G such
that the diagrams in (4.3) and (4.4) commute. The group scheme (G,m) is commutative
if and only if multiplication interchanges with switching the factors in the sense that also
the following diagram commutes:

G×S G
(g,h) 7→ (h,g) //

m
$$

G×S G

m
zz

G.

(4.5)

De�nition 4.4. Let (G1,m1) and (G2,m2) be group schemes over S. A group scheme
morphism from G1 to G2 is a morphism of S-schemes f : G1 → G2 such thatm2◦(f×f) =
f ◦m1. Equivalently, it is an S-morphism f such that for all T → S, the induced map

f(T ) : G1(T ) −→ G2(T )

is a group homomorphism.

If (G,m) is a commutative S-group scheme, then EndS−Grp.Sch.(G,m) forms a (possibly
non-commutative) ring because endomorphisms can be �added� (meaning multiplied in
G) and multiplied (meaning composed). Concretely, sum and product of two elements
f, g ∈ End(G) are given by

f + g := m ◦ (f, g), fg := f ◦ g.

In particular, we can add the identity n times to itself and obtain the n-th power endo-
morphism [n] : G → G. On each of the groups G(T ), it is given by [n](g) = gn. This is
even de�ned for n ∈ Z by [n] ◦ i = [−n]. In total, these give the ring map

[ · ] : Z→ End(G). (4.6)

Coming back to general group schemes, we next de�ne kernels. This is straightforward
because �ber products exist in the category of S-schemes. (De�ning quotients, on the
other hand, is tricky. We refer to [9, �13] for some cases.)

De�nition 4.5. Let f : G1 → G2 be a homomorphism of S-group schemes. Let e2 : S →
G2 be the neutral element section of G2. The kernel of f is de�ned as the �ber product

ker(f) //

��

S

e2
��

G1
f // G2.

(4.7)
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It is clear from its de�nition that ker(f) has the property

ker(f)(T ) = ker (f(T ) : G1(T ) −→ G2(T )) . (4.8)

The multiplication morphism of G1 restricts to a multplication on ker(f) which makes
ker(f) into a group scheme:

ker(f)×S ker(f) //

��

ker(f)

��
G×S G

m // G.

(4.9)

Remark 4.6. Recall that ifX → S is a separated morphism, then every section σ : S → X
is a closed immersion. Thus, if G→ S is a separated group scheme (e.g. a�ne or proper),
then the neutral element e is a closed immersion. It follows that if in (4.7) G2 → S is
separated, then ker(f)→ G1 is a closed immersion.

4.2. A commutative example: The multiplicative group. Assume that S = SpecR
is a�ne. De�ne Gm,S = SpecR[t, t−1] which we would like to make into a group scheme
over S. Recall that Spec(−) is an anti-equivalence from R-algebras to a�ne S-schemes.
We de�ne the multiplication map m : Gm,S ×S Gm,S → Gm,S as Spec(m∗) where m∗ is

m∗ : R[t, t−1] −→ R[t, t−1]⊗R R[t, t
−1]

t 7−→ t⊗ t.
(4.10)

We next verify that this makes Gm,S into an S-group scheme. For every S-scheme T , we
identify

Gm,S(T )
∼−→ OT (T )

×

[g : T → Gm,S ] 7−→ g∗(t).
(4.11)

Note that this map is obviously de�ned; the fact that it is an isomorphism is the adjunction
MorS(T, Spec(A))

∼→ HomR(A,OT (T )). Given two morphisms g1, g2 : T → Gm,S , we
compute the (dual of the) composition m ◦ (g1, g2) by

R[t, t−1]
m∗−→ R[t, t−1]⊗R R[t, t

−1]
g∗1⊗g∗2−→ OT (T )

t 7−→ t⊗ t 7−→ g∗1(t)g
∗
2(t).

Thus we see that the operation m(T ) on Gm,S(T ) translates to the usual multiplication
under (4.11). In particular, m(T ) is a group structure for every T , and hence (Gm,S ,m)
a group scheme.

We can next calculate the neutral element e and the inversion map i from (4.2). Under
(4.11), the unit element 1 ∈ R× corresponds to

e∗ : R[t, t−1] −→ R, t 7−→ 1.

Taking e = Spec(e∗) gives the neutral element section. The inversion map i = Spec(i∗) is
given by

i∗ : R[t, t−1] −→ R[t, t−1], t 7−→ t−1. (4.12)

The n-th power maps are given as [n] = Spec([n]∗) with

[n]∗ : R[t, t−1] −→ R[t, t−1], t 7−→ tn. (4.13)

Note that (4.12) and (4.13) are compatible in the sense that i = [−1], which is always the
case for a commutative group scheme. The next proposition, on the other hand, is very
speci�c to Gm.

Proposition 4.7. Let S be a connected scheme. Then End(Gm,S) = Z.
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Proof. We only consider the case S = Spec(k). The extension to general S can be found
in [9, Proposition 2.12].

By de�nition, a group scheme endomorphism f of Gm,k is the same as f = Spec(f∗)
for a unique k-algebra morphism f∗ : k[t, t−1] −→ k[t, t−1] such that

(f∗ ⊗ f∗) ◦m∗ = m∗ ◦ f∗ (4.14)

where m∗(t) = t ⊗ t is as in (4.10). Giving a k-algebra morphism f∗ is equivalent to
specifying its image f∗(t) ∈ k[t, t−1]×. These units are

k[t, t−1]× = {λtn | λ ∈ k×, n ∈ Z}.

If f∗(t) = λtn, then (4.14) evaluated at t becomes

λtn ⊗ λtn ?
= λ(t⊗ t)n (4.15)

which holds if and only if λ2 = λ, meaning λ = 1. Note that f∗(t) = tn precisely de�nes
the multiplication-by-n morphism [n] (meaning taking n-th power in this context) and
thus End(Gm,k) = Z is proved. □

We next determine the kernel µn,S := ker([n]). By de�nition, see (4.7), we need to
compute the �ber product

µn,S //

��

S

��
Gm,S

[n] // Gm,S .

Fiber products of a�ne schemes are computed by tensor products of rings, so we get

µn,S = Spec
(
R⊗ 1←pt, R[t,t−1], t7→tn R[t, t−1]

)
= Spec (R[t]/(tn − 1)) .

(4.16)

In terms of (4.8) and (4.11), we see

µn,S(T ) = {ζ ∈ OT (T )
× | ζn = 1}. (4.17)

That is, µn,S is the group scheme of n-th roots of unity. Let us assume that S = Spec(k).
We observe the following interesting phenomenon:

Assume that n is prime to char(k). Then tn−1 ∈ k[t] is a separable polynomial. Hence,
µn,k = Spec k[t]/(tn− 1) is an étale k-scheme. On the other hand, if p = char(k) | n, then
tn − 1 is not separable and k[t]/(tn − 1) is not reduced. For example,

µp,k = Spec k[t]/(tp − 1)

= Spec k[t]/(t− 1)p

∼−→ Spec k[ε]/(εp)

is completely in�nitesimal. We have the following general results in this direction.

Theorem 4.8 (Cartier, [13, Corollary 8.38]). Let k be a �eld of characteristic 0 and let
G/k be a �nite type group scheme. Then G is smooth.

A morphism f : X → S is said to be �nite locally free of rank n if it is �nite and if
f∗(OX) is locally free of rank n as OS-module.

Theorem 4.9. Let G be a commutative S-group scheme which is �nite locally free of rank
n. Assume that n ∈ OS(S)

×. Then G is étale.

Exercise 4.10. Verify the commutativity of (4.3) and (4.4) for (Gm,m, e, i).
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4.3. A non-commutative example: GLn. Let S = Spec(R) be a�ne as before. The
(underlying scheme of the) general linear group in n variables over S is de�ned as

GLn,S = SpecR
[
tij , 1 ≤ i, j ≤ n; det((tij)i,j)

−1] .
For every S-scheme T , we can (exercise) identify GLn,S(T ) with GLn(OT (T )) by

Φ : [g : T → GLn,S ] 7−→ (g∗(tij))i,j . (4.18)

We have the usual matrix multiplication on GLn(OT (T )). In terms of (4.18), it comes from
the multiplication morphism m : GLn,S ×S GLn,S → GLn,S which is given in coordinates
by

m∗(tij) =

n∑
k=1

tik ⊗ tkj .

The pair (GLn,S ,m) is then an S-group scheme. The identity map e = Spec(e∗) is given
by

e∗ : R[tij , det((tij)ij)
−1] −→ R, e∗(tij) =

{
1 if i = j

0 otherwise.

The inverse of the matrix (tij)ij ∈ GLn(R[tij ,det((tij)ij)
−1]) has an expression of the form

det((tij)ij)
−1 · (sij)ij where the sij are polynomials in the variables tij . (In fact, the sij

are the entries of the adjugate matrix.) Then the inverse morphism i : GLn,S → GLn,S is
given in coordinates by

i∗(tkℓ) = det((tij)ij)
−1skℓ.

Clearly, GL1,S is the same as the multiplicative group Gm,S . For every S-scheme T , we
have a determinant morphism GLn(OT (T )) → OT (T )

×. With respect to our identi�ca-
tions (4.11) and (4.18), these come from the group scheme homomorphism

det : GLn,S −→ Gm,S , det∗(t) = det((tij)ij). (4.19)

Its kernel ker(det) is the group subscheme SLn,S ⊂ GLn,S . Being a closed subscheme of
an a�ne scheme, it is again a�ne. It can be described explicitly by

SLn,S = Spec
(
R[tij , 1 ≤ i, j ≤ n]/(det((tij)ij)− 1)

)
.

4.4. Linear algebraic groups. We now specialize to the case of �nite type group schemes
over a �eld k. A general classi�cation theorem essentially reduces their study to the a�ne
and the proper case.

Theorem 4.11 (see [13, �8a]). Let G/k be a connected �nite type k-group scheme. Then
there exists a unique maximal normal, connected, a�ne closed group sub-scheme N ⊆ G.
The quotient G/N is an abelian variety.

A�ne �nite type k-group schemes are also called linear algebraic groups. The reason
for this name is that they can always be realized as a group of linear automorphisms of
some vector space. That is, they always embed into some GLN .

Theorem 4.12 (see [13, Corollary 4.10]). Let G be an a�ne �nite type k-group scheme.
Then there exist an integer n and a closed immersion group scheme morphism G→ GLN .

4.5. Abelian varieties. We have already de�ned abelian varieties in De�nition 4.2. The
main point of this de�nition is that abelian varieties are proper. This implies that they
are necessarily commutative which also explains their name.

Theorem 4.13 ([9, Corollary 3.7]). Let (A,m) be an abelian variety over k. Then (A,m)
is a commutative group scheme.
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5. Elliptic curves

In the previous section, we de�ned elliptic curves as proper, smooth, 1-dimensional,
connected group schemes and stated that they are always commutative (De�nition 4.1
and Theorem 4.13). However, this de�nition does not shed any light on how to actually
write down an example of an elliptic curve. For this reason, we want to next learn about
two equivalent de�nitions:

• An elliptic curve over a �eld k is a pair (E, e) consisting of a proper smooth connected
curve E/k of genus 1 and a rational point e ∈ E(k).

• An elliptic curve over a �eld k is a smooth cubic curve E ⊂ P2
k that contains the point

[0 : 1 : 0].

Passing between these de�nitions involves the theory of curves and line bundles. A careful
discussion with many details can be found in [9, �4 � �7], but some of these details are
tangential for our course. So we will give a shorter and more high-level treatment.

5.1. Cubic curves are elliptic curves. Our �rst aim is to construct elliptic curves. Let
h(x) = x3 + ax+ b be a monic cubic polynomial (without x2-term). A polynomial of the
form

f = y2 − h(x) (5.1)

is called a simpli�ed Weierstrass equation. Let

F (X,Y, Z) = Y 2Z −X3 − aXZ2 − bZ3 (5.2)

be the homogenization of f , and let E = V+(F ) ⊂ P2
k be its vanishing locus.

Lemma 5.1. Assume that char(k) ̸= 2 and that h is separable. Then E is a smooth curve.

Proof. First observe by direct substitution in (5.2) that, on the level of sets, E ∩V+(Z) =
{[0 : 1 : 0]}. We can thus proceed by checking the Jacobi criterion on E ∩D+(Z) and for
the point [0 : 1 : 0].

By de�nition, we have

E ∩D+(Z)
∼−→ V (y2 − h(x)) ⊂ A2

k.

The Jacobi matrix of the Weierstrass polynomial is the gradient

(∂f/∂x, ∂f/∂y) = (−h′(x), 2y). (5.3)

Let e ∈ E ∩ D+(Z) be an arbitrary point. Let κ(e) be the residue �eld of e and let
(e1, e2) ∈ κ(e) × κ(e) be the coordinates of e.5 If e2 ̸= 0, then also 2e2 ̸= 0 by our
assumption char(k) ̸= 2, meaning 2y does not vanish in e. If e2 = 0, however, then
h(e1) = 0 since f(e1, e2) = 0. We have assumed that h is separable, which is equivalent
to h(x) and h′(x) being coprime. Thus h′(e1) ̸= 0. In summary, we have seen that the
gradient (5.3) does not vanish in e.

We now consider the point [0 : 1 : 0]. An a�ne chart is given by

E ∩D+(Y )
∼−→ V (z − x3 − axz2 − bz3) ⊂ A2

k.

In these coordinates, [0 : 1 : 0] maps to (0, 0). Moreover, the gradient of that equation is

(−3x2 − az2, 1− 2axz − bz2). (5.4)

Its second entry does not vanish in (0, 0), so the Jacobi criterion holds in (0, 0). The proof
of the lemma is now complete. □

Theorem 5.2. Let E = V+(F ) ⊂ P2
k be a smooth cubic curve, and let O ∈ E(k) be a

rational point. Then there exists a unique group scheme structure + : E ×Spec(k) E → E
on E with neutral element O. By Theorem 4.13, it is necessarily commutative.

5Given a scheme X and a point x ∈ X, we use κ(x) = Quot(OX,x/mx) to denote the residue �eld in x.
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Figure 2. The R-points of the two Weierstrass equations y2 = x3+1 and
y2 = x3−x. Note that V (y2− (x3−x)) ⊂ A2

R is a connected scheme. Only
its R-points when endowed with the real topology are disconnected.

There are two approaches to this theorem. Today, we will explain the more elementary
one, which is to give a geometric construction of + in terms of the geometry of P2. A
beautiful aspect of this construction is that it illustrates why cubic curves behave so
special. Details on some calculations behind this approach may be found in Silverman's
book [15, �III.1-3].

The second approach is based on line bundles, the Riemann�Roch Theorem, and the
Yoneda Lemma. It is more conceptual, and some of its aspects will be discussed in more
detail later in the course. A reference is [9, �7].

Proof of Theorem 5.2. We will admit the uniqueness part of the theorem, which is a gen-
eral property of abelian varieties [9, Proposition 3.6]. Thus, the main problem is to
construct the addition law.

Lemma 5.3. Let F ∈ k[X,Y, Z] be homogeneous of degree 3 without linear factor and let
E = V+(F ). Let L ⊂ P2

k be any line. Then E intersects L in three points when counted
with multiplicities. More precisely, E ∩ L = SpecA for a k-algebra A with dimk(A) = 3.

Here, by line we mean a curve of the form V+(aX+ bY + cZ), where (a, b, c) ̸= (0, 0, 0).

Proof. After a linear change of coordinates, we may assume that L = V+(Z). Since F has
no linear factor, Z ∤ F . Thus F |L = F (X,Y, 0) is a non-zero homogeneous polynomial of
degree 3 and hence has three zeroes (counted with multiplicities) as claimed. □

Construction 5.4. Given P,Q ∈ E(k), de�ne a line L ⊂ P2
k as follows:

(1) If P ̸= Q, then let L be the unique line that passes through P and Q.
(2) If P = Q, then let L be the tangent line to E in that point.

The de�nition of the tangent uses the smoothness of E. (In a local chart, take the line
perpendicular to the gradient of the equation de�ning E.) The smoothness of E also
implies that F has no linear factor. Hence Lemma 5.3 applies and shows that E and L
intersect in three points (counting multiplicities). But two of these points are known to
be P and Q which lie in L(k)! And if a cubic polynomial has two rational roots, then the
third root is rational as well. Thus there exists a unique third rational intersection point
R ∈ (E ∩ L)(k). Repeating this construction with O,R instead of P,Q, de�nes a fourth
point S ∈ E(k).

De�nition 5.5. The sum of P,Q ∈ E(k) is de�ned as P +Q := S.

It is true, but not obvious, that this de�nes a group structure on E(k). The easy part is
to show that O is a neutral element and that every element has an inverse (exercise). It is
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Figure 3. The case P ̸= Q is shown on the left, the tangent construction
when P = Q on the right. The point O here is the point [0 : 1 : 0] at
in�nity. The vertical dotted lines are the lines through O and R. The
picture is taken from [15, �III].

moreover clear that the operation (P,Q) 7→ P +Q is commutative. Showing associativity
is more tricky, however.

So far, we have de�ned a commutative group E(k). If K/k is a �eld extension, then
we can apply the above construction to K ⊗k E ⊂ P2

K and obtain a group structure on
E(K) = (K ⊗k E)(K). We know from algebraic geometry that, given reduced varieties
(smooth, for example) X and Y over an algebraically closed �eld K, a morphism f : X →
Y is uniquely determined by the map f(K) : X(K)→ Y (K) on K-points. So there is at
most one morphism E ×Spec(k) E → E that induces the above group structures on all the
E(K), K/k. Moreover, if it exists, it will satisfy all group axioms because the sets E(K)
do (apply the uniqueness to the diagrams (4.3) and (4.4)).

To complete the proof, one carries out Construction 5.4 in indeterminates and sees that
it indeed comes from a morphism of varieties. We refer the curious reader to [15, Theorem
3.6]. □

The simpli�ed Weierstrass equations from Lemma 5.1 give simple examples of smooth
cubic curves. We will later see that if char(k) ̸= 2, 3, then every elliptic curve can be
described by (V+(F ), [0 : 1 : 0]) for a simpli�ed Weierstrass equation F . In particular, the
isomorphism classes of elliptic curves over k can be parametrized by the two coe�cients
a, b ∈ k2 of h(x) = x3 + ax + b. (Only those a and b such that h is separable occur, of
course.)

5.2. Elliptic curves have genus 1. Our next goal is to show that all elliptic curves
come from plane cubic curves. For this, we �rst need to �nd a way to extract geometric
properties of E from the existence of the group structure. This is done using di�erential
forms. Let us begin by recalling their de�nition.

De�nition 5.6. Let R be a ring, A an R-algebra, and M an A-module. An R-derivation
from A to M is an R-linear map δ : A → M such that the Leibniz rule holds: For all
a, b ∈ A,

δ(ab) = aδ(b) + bδ(a).

Lemma 5.7. There exists a universal R-derivation. That is, there exists an A-module
Ω1
A/R together with an R-derivation d : A→ Ω1

A/R such that every R-derivation δ : A→M
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factors through a unique A-module homomorphism φ : Ω1
A/R →M . As diagram,

A
d //

∀ δ
&&

Ω1
A/R

∃! φ

��
M.

(5.5)

The pair (Ω1
A/R, d) is called the module of Kähler di�erentials of A over R. It is easy

to describe in terms of generators and relations. Let

A = R[X1, . . . , Xn]/(f1, . . . , fm)

be a presentation of A as a quotient of a polynomial ring over R. Consider the free module⊕n
i=1AdXi generated by symbols dX1, . . . , dXn. (This is really A

n; the symbols dXi are
just the traditional notation for the standard basis here.) For each f ∈ R[X1, . . . , Xn], we
can take the gradient vector

df :=
∂f

∂X1
· dX1 + . . .+

∂f

∂Xn
· dXn. (5.6)

Then (
AdX1 ⊕ . . .⊕AdXn

)
/
〈
df1, . . . , dfm

〉 ∼−→ Ω1
A/R

dXi
∼−→ d(Xi).

(5.7)

The key ideas for proving Lemma 5.7 and (5.7) are as follows:

• Since d : A→ Ω1
A/R is supposed to be universal, the module Ω1

A/R has to be generated

by all derivatives d(a) as A-module.

• Since every element of A is a polynomial in the Xi with R-coe�cients, the Leibniz rule
allows to write every d(a) as an A-linear combination of the d(Xi). Hence, the d(Xi)
already generate Ω1

A/R as A-module.

• Since the fj ∈ A are zero, also the d(fj) in Ω1
A/R have to be zero. By the Leibniz rule,

d(fj) = (∂f/∂X1) · d(X1) + . . . (∂f/∂Xn) · d(Xn),

which explains the relations df1, . . . , dfm in (5.7).

Given an element g ∈ A, there is an isomorphism of A[g−1]-modules

Ω1
A/R[g

−1]
∼−→ Ω1

A[g−1]/R (5.8)

which is uniquely characterized by sending d(a) to d(a). In other words, the formation
of Ω1

A/R is compatible with localizations. This means that the construction can be glued

from rings to schemes.

De�nition 5.8. Let π : X → S be a morphism of schemes. The quasi-coherent module
with derivation d : OX → Ω1

X/S is de�ned as the unique datum (up to isomorphism)

that is, locally on a�ne charts Spec(R) ⊆ S and Spec(A) ⊆ π−1(Spec(R)), given by
d : A→ Ω1

A/R glued along (5.8).

Kähle di�erentials are closely related to smoothness, and we next state one form of this
relation.

Theorem 5.9 ([9, Theorem 4.18]). Let π : X → S be a morphism that is locally of �nite
presentation with purely d-dimensional �bers. Then π is smooth if and only if Ω1

X/S is

locally free of rank d as OX-module.



26 ANDREAS MIHATSCH

De�nition 5.10 (Genus of a curve). (1) By curve over a �eld k, we mean a proper,
smooth, geometrically connected and 1-dimensional k-scheme.

(2) Let C → Spec(k) be a curve. By Theorem 5.9, Ω1
C/k is a line bundle on C. Being

a coherent sheaf on a proper variety, the space of global sections Ω1
C/k(C) is a �nite-

dimensional k-vector space. Its dimension is called the genus of C.

Here, recall that a �nite type k-schemeX is said to be geometrically reduced, connected,
integral, etc. if the base change k̄⊗kX is reduced, connected, integral, etc. An equivalent
condition is that for all �eld extensions K/k, the base change K ⊗k X has the relevant
property.

For example, elliptic curves are geometrically connected because they are connected
over k (by de�nition) and have a rational point (the neutral element).

Theorem 5.11. Let E be an elliptic curve over a �eld k. Then E has genus 1.

Sketch of proof. The key point is that the sheaf of di�erential forms of a group scheme is
generated by invariant forms. The proof of this (see [9, Proposition 5.7]) does not concern
us here, we will only state and use the result.

Let π : G→ S be a group scheme with neutral element section e : S → G. Recall that
quasi-coherent modules can be pulled back under scheme morphisms. So we may �rst
form e∗(Ω1

G/S), a quasi-coherent S-module. Then we may again pull back along π. The

statement is that there exists an isomorphism

γ : π∗e∗Ω1
G/S

∼−→ Ω1
G/S . (5.9)

We now apply (5.9) to our elliptic curve E → Spec(k). The pullback V = e∗(Ω1
E/k) is

a one-dimensional k-vector space because Ω1
E/k is a line bundle. Then (5.9) states that

γ : OE ⊗k V
∼−→ Ω1

E/k.

Choosing a basis vector ω ∈ V , we have thus obtained an isomorphism OE
∼→ Ω1

E/k. The

genus of E is hence dimkOE(E).

Lemma 5.12. Let X → Spec(k) be a proper k-scheme that is geometrically reduced and
geometrically connected. Then dimkOX(X) = 1.

Proof. The global sections A = OX(X) are a �nite-dimensional k-algebra. Its formation
commutes with base change in the sense that for every �eld extension K/k, we have

K ⊗k A = OK⊗kX(K ⊗k X).

Hence, if X is geometrically reduced and connected, then k̄ ⊗k A is reduced and has a
unique maximal ideal. The residue �eld is necessarily k̄ because k̄ is algebraically closed.
So k̄

∼→ k̄ ⊗k A. Thus A was one-dimensional to begin with, meaning k
∼→ A. □

Coming back to our elliptic curve E → Spec(k), we see that OE(E) = k, meaning that
E has genus 1 as claimed. □

Remark 5.13. The isomorphism in (5.9) is given by extending the value of a di�erential
form on e(S) in the unique way to a left-translation invariant di�erential form on G. This
concept is also commonly used in di�erential geometry, where one often identi�es the Lie
algebra g of a Lie group G with the space of translation invariant vector �elds on G.

For example, the form dt on R is translation invariant with respect to addition because
d(t+ λ) = dt for all λ ∈ R. The form t−1dt on R× is translation invariant with respect to
multiplication because (tλ)−1d(λt) = t−1dt for all λ ∈ R×.
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5.3. Genus 1 curves as cubics. We have just shown that every elliptic curve has genus
1. In order to complete the circle of equivalent de�nitions (a triangle, actually), it is left
to realize curves of genus 1 as cubic curves in P2. Let us �rst brie�y recall a bit of general
formalism.

Construction 5.14. Let X be a k-scheme. Giving a morphism f : X → Pn
k is the same

as giving a line bundle L on X and a surjection of OX -modules

ℓ : O⊕(n+1)
X −↠ L.

Namely, on Pn
k , we have the standard line bundle O(1). It is generated by the n+1 global

sections X0, . . . , Xn corresponding to the n + 1 coordinates on Pn
k . That is, we have a

surjection

O⊕(n+1)
Pn
k

−↠ O(1), ei 7−→ Xi.

Given f : X → Pn
k , we can pull back that surjection and obtain a pair L = f∗O(1),

ℓ : O⊕(n+1)
X ↠ L as desired.

Conversely, assume that (L, ℓ) is given. Let si = ℓ(ei) ∈ L(X) be the n + 1 global
sections de�ned by ℓ. Let Ui = D(si) ⊆ X be the open subscheme where si is a generator.
That is, if we locally trivialize L, say

OU · s
∼−→ L|U , si = fis, fi ∈ OU (U),

then Ui ∩ U = D(fi) is the locus where fi is invertible.
Over the open subset Ui, every section of L is a unique multiple of si. So we have de�ned

functions sj/si ∈ OX(Ui) by the identity sj = (sj/si) · si. This de�nes a morphism

fi =
(s0
si
, . . . ,

ŝi
si
, . . . ,

sn
si

)
: Ui −→ An.

On overlaps Ui ∩ Uj , we have the (obvious) relation

sk
si

=
sj
si
· sk
sj
.

If we spell out how Pn
k is glued from n+1 copies of An

k by the exact same rule of coordinate
transformation, then this implies that the fi glue to a morphism

f : X −→ Pn
k .

A good notation for this morphism is [s0 : s1 : . . . : sn]. Namely, if x ∈ X is a point then
we may view [s0(x) : . . . : sn(x)] ∈ Pn(κ(x)) as follows. Let s ∈ Lx be a generator as
OX,x-module. Then we may write si,x = his for unique functions hi ∈ OX,x. The tuple
[h0(x) : . . . : hn(x)] is a point of Pn(κ(x)). Any other generator of Lx di�ers from s by a
unit, hence the tuple (h0(x), . . . , hn(x)) is unique up to κ(x)×, meaning that

[s0(x) : . . . : sn(x)] := [h0(x) : . . . : hn(x)]

is well-de�ned.

Exercise 5.15. Verify that the above two constructions (L, ℓ) ←→ (f : X → Pn
k) are

inverse to each other.

Example 5.16. We know that every line bundle on P1
k is isomorphic to one of the line

bundles O(d). The integer d ∈ Z is its degree. We know that

dimk(O(d)(P1
k)) =

{
d+ 1 if d ≥ 0

0 if d < 0.

If d ≥ 0, then a basis for the global sections O(d)(P1
k) is given by the monomials

Xd
0 , X

d−1
0 X1, . . . , X0X

d−1
1 , Xd

1
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where X0, X1 ∈ O(1)(P1
k) are the coordinates on P1

k. If d ≥ 0, then these monomials also
generate O(d) as line bundle. That is, the map

O⊕(d+1)

P1
k

−↠ O(d), ei 7−→ Xd−i
0 Xi

1

is a surjection of quasi-coherent OP1
k
-modules. The corresponding morphism P1

k → Pd
k is

called the Veronese map. It is a closed immersion when d ≥ 1.

Construction 5.14 shows that, if we want to de�ne a morphism E → P2
k from an elliptic

curve to the projective plane, then we need to understand line bundles and their global
sections on E. Let us begin with some general observations and de�nitions.

• Let X be a noetherian scheme and F a coherent OX -module. (This is the same as
F being quasi-coherent and of �nite type.) Then F is locally free (meaning a vector
bundle) if and only if for every x ∈ X, the stalk Fx is a free OX,x-module.

• Thus, if C is a curve over a �eld k, then a coherent module L is a line bundle if and
only if for every x ∈ X, the stalk Lx is free of rank 1 over OC,x.

• By de�nition, all our curves are smooth, hence normal. So for x ∈ C closed, the local
ring OC,x is a discrete valuation ring (DVR). By the classi�cation of modules over
principal ideal domains (PIDs), a �nite type OC,x-module is free if and only if it is
torsion-free.

Conclusion 5.17. Let 0 ̸= I ⊆ OC be an ideal sheaf in OC . Then I is stalk-by-stalk
torsion-free because it is a subsheaf of torsion-free sheaf OC , and hence I is a line bundle.

De�nition 5.18 (Degree of a line bundle). (1) Let I ⊆ OC be a non-zero ideal sheaf.
Then Z = V (I) ⊂ C is a proper closed subscheme. It has to be 0-dimensional, and hence
is a �nite k-scheme. As such, it is a�ne, meaning Z ∼= Spec(A) for a �nite dimension
k-algebra A. The degree of I is de�ned as −dimk(A). More concretely, because each local
ring OC,x is a DVR, we can write

Z =

r⊔
i=1

Spec(OC,xi/m
ei
xi
)

for uniquely determined pairwise di�erent closed points x1, . . . , xr ∈ C and exponents
e1, . . . , er ≥ 1. Then

deg(I) = −
r∑

i=1

ei · [κ(xi) : k].

(2) Let L be a line bundle on C. There always exist two ideal sheaves I1, I2 ⊆ OC such
that L ∼= I1 ⊗ I−12 . We de�ne

deg(L) := deg(I1)− deg(I2).
This does not depend on the choices of I1 and I2. In particular, the degree de�nes a group
homomorphism

deg : Pic(C) −→ Z.

Motivation 5.19. The degree is a simple numerical invariant of a line bundle on a curve.
The following results show that it is extremely helpful when studying global sections of
line bundles and hence, by Construction 5.14, maps C → Pn

k .

Theorem 5.20 (Riemann�Roch). Let C be a curve of genus g over a �eld k. Then, for
every line bundle L on C,

dimL(C) = deg(L) + 1− g + dim (Ω1
C/k ⊗ L

−1)(C). (5.10)

Corollary 5.21. The degree of Ω1
C/k is 2g − 2.
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Proof. Apply the Riemann�Roch Theorem 5.20 to Ω1
C/k. We obtain

g = deg(Ω1
C/k) + 1− g + 1

which we may rearrange as claimed. □

Corollary 5.22. Let C/k be a curve of genus 1 and let L be a line bundle of degree
deg(L) ≥ 1 on C. Then

dim L(C) = deg(L).
Proof. By Corollary 5.21, deg(Ω1

C/k) = 0. Since deg(L) ≥ 1, we then have

deg(Ω1
C/k ⊗ L

−1) = 0− deg(L) < 0.

Line bundles of negative degree cannot have non-zero global sections, so (Ω1
C/k⊗L

−1)(C) =

0. Evaluating the Riemann�Roch identity (5.10), we �nd dimL(C) = deg(L) as claimed.
□

Theorem 5.23. Let E be a curve over k such that E(k) ̸= ∅. Then there exists a
closed immersion E ↪→ P2

k which identi�es E with the curve V+(F ) de�ned by a cubic
homogeneous polynomial.

Proof. Step 1: Construction of a morphism E → P2
k. We have seen in Construction 5.14

that, in order to de�ne a morphism E → P2
k, our task is to �nd a line bundle L on E

together with a surjection ℓ : O3
E ↠ L.

We now draw inspiration from the example of P1
k above. By assumption, there exists

a k-rational point e ∈ E(k). View {e} as a reduced closed subscheme of E, and let Ie
be its ideal sheaf. According to De�nition 5.18, its degree is −1. So the dual line bundle
M := I−1e has degree 1.

The degree ofM⊗d is d.6 By Corollary 5.22, this means

dimM⊗d(E) = d, d ≥ 1.

We are mostly interested in L =M⊗3. For every closed point y ∈ E we have an ideal sheaf
Iy as before. Its degree is −[κ(y) : k], the negative of the residue �eld extension degree.
On the one hand, we may consider L and Iy as abstract line bundles. By Riemann�Roch,
the dimension of global sections strictly decreases when tensoring with Iy because the
degree goes down:

dim(L ⊗ Iy)(E) < 3.

On the other hand, we can consider the concrete exact sequence

0 −→ Iy −→ OE −→ i∗κ(y) −→ 0

where i : {y} → E is the inclusion map. Tensoring by L, which is an exact operation
because L is locally free, we get an exact sequence

0 −→ L⊗ Iy −→ L −→ i∗L(y) −→ 0.

Here, L(y) := i∗L is our notation for the 1-dimensional κ(y) vector space that forms the
�ber of L in y. Taking global sections, we see that

(L ⊗ Iy)(E) ⊆ L(E)

are precisely those global sections that vanish in y.
We conclude that for every closed point y ∈ E, there exists a global section s ∈ L(E)

that does not vanish in y. This means that L is generated by its global sections. That is,
after choosing a basis s0, s1, s2 for the three-dimensional vector space L(E), we obtain a
surjection

ℓ : O⊕3E −↠ L, ei 7−→ si,

6All tensor products during the proof are taken over OE .
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and hence a morphism f : E → P2
k as in Construction 5.14.

Step 2: f is a closed immersion. We can prove that f is a closed immersion after base
change to k̄. So from now on, we assume that k is algebraically closed. This helps, because
now every closed point y ∈ E is k-rational and, in particular, deg(Iy) = −1. Let y, y′ ∈ E
be two (possibly equal) closed points. Corollary 5.22 implies that

dim (L ⊗ Iy)(E) = 2

dim (L ⊗ Iy ⊗ Iy′)(E) = 1.

So, after applying a linear change of coordinates on P2
k, we may assume that our basis

s0, s1, s2 ∈ L(E) is chosen with

s0 ∈ L(E) \ (L ⊗ Iy)(E),

s1 ∈ (L ⊗ Iy)(E) \ (L ⊗ Iy ⊗ Iy′)(E).
(5.11)

If y ̸= y′, then this means that

[s0(y) : s1(y) : s2(y)] ̸= [s0(y
′) : s1(y

′) : s2(y
′)]

because s1 vanishes in y while it does not vanish in y′. We conclude that f is injective
at the level of topological spaces. Since f is also closed by the properness of E, it is
topologically a closed immersion.

Finally, if y = y′, then the above choice of s1 ensures that it vanishes to �rst order in
y, but not to second order. Translating this to local coordinates (omitted), it is possible
to deduce that [s0 : s1 : s2] is injective on the tangent space (my/m

2
y)
∨ in y, which means

that f is even schematically a closed immersion near y.
Step 3: Its image is de�ned by a cubic equation. We do not assume anymore that k is

algebraically closed. Recall that e ∈ E(k) is our given rational point and thatM = I−1e .
Dualizing the descending chain

. . . ⊂ I3e ⊂ I2e ⊂ Ie ⊂ OE ,

we obtain an ascending chain

OE ⊂M ⊂M2 ⊂M3 ⊂ . . . .
Proceeding with the same logic as in (5.11), we choose elements

1 ∈ OE(E)

M(E) = OE(E) by Cor. 5.22

x ∈M⊗2(E)\M(E)

y ∈M⊗3(E)\M⊗2(E).

(5.12)

View 1, x, y as elements of L(E) =M⊗3(E). Then they form a basis because y generates L
near e, while x vanishes to �rst order and 1 to third order in e. We consider the morphism

[x : y : 1] : E −→ P2
k.

Consider the sections
1, x, y, x2, xy, y2, x3 ∈M⊗6(E). (5.13)

These are seven sections of a six-dimensional vector space (use again Corollary 5.22), and
hence there exists a non-trivial linear relation

a0y
2 + b0x

3 + a1xy + a2x
2 + a3y + a4x+ a6 = 0. (5.14)

Claim: Both a0 and b0 are non-zero. The section x is a generator of M⊗2 near e; the
section y a generator ofM⊗3 near e. Hence, y2 and x3 are both generators ofM⊗6 near
e. Thus either of the set of vectors

1, x, y, x2, xy, y2, or 1, x, y, x2, xy, x3 (5.15)
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has the property that the six sections vanish to orders precisely 6, 4, 3, 2, 1, 0 in the stalk
(M⊗6)e. Thus, either of the two sets forms a basis forM⊗6(E). It follows that a0b0 ̸= 0
as claimed. □

Conclusion: Identity (5.14) means that the morphism [x : y : 1] factors through the
cubic curve

V+(a0Y
2Z + b0X

3 + a1XY Z + a2X
2Z + a3Y Z

2 + a4XZ
2 + a6Z

3)

and the proof is complete.

Our proof even showed that the cubic equation for E may always be chosen in the form
(5.14) (up to homogenization). We can simplify this expression further:

• Scaling y and x by a0/b0, we obtain a relation of the form

y2 + (b1x+ b3)y = x3 + b2x
2 + a4x+ a6.

This kind of cubic equation is called a general Weierstrass equation.

• If char(k) ̸= 2, then we can change y to y+(b1x+b3)/2 to simplify further to a relation
of the form

y2 = x3 + c2x
2 + c4x+ c6.

• If char(k) ̸= 3, then we may further replace x by x+ c2/3 and arrive at the simpli�ed
form

y2 = x3 + ax+ b. (5.16)

Ultimately, we conclude that every elliptic curve can be de�ned by a general Weierstrass
equation. Outside of characteristics 2 and 3, we may even restrict to simpli�ed Weierstrass
equations.
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