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1. INTRODUCTION

In this first lecture, we will learn, very roughly, what Shimura varieties are and why
they are interesting. Everything brought up today will be covered in much more detail
later in the course, and it will be perfectly normal that many terms will be new during a
first reading. Our goal today is only to get an overview.

1.1. Why study Shimura varieties? Shimura varieties combine two interesting prop-
erties:

e They are varieties defined over number fields which makes them interesting from a
number theory perspective. Most importantly, their étale cohomology groups are rep-
resentations of Galois groups of number fields.

e Their definition is in terms of connected reductive algebraic groups G/Q. They come
equipped with an action of the adelic points G(Ay), which implies that their étale
cohomology groups are also G/(A f)-representations.

Hence, the étale cohomology groups of Shimura varieties are both Galois and G(Ay)-
representations. Conjecturally, this two-fold structure is described by the global Langlands
correspondence. Conversely, one can use the cohomology of Shimura varieties to prove
important cases of this correspondence. This is the main motivation for our course, and
our overall aim is to learn about several important ideas in this context.

Let us mention that Shimura varieties are also interesting for other reasons. For exam-
ple, the study of heights on the Siegel variety plays an important role in Faltings’s proof
of the Mordell Conjecture [3]. Another example is the Gross—Zagier formula [5]|, which
states an identity between height pairings of complex multiplication points on the modular
curve and derivatives of L-functions. It plays a major role in the proof of cases of the
Birch—Swinnerton-Dyer Conjecture. Its higher-dimensional generalizations, the arithmetic
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Gan—Gross—Prasad Conjectures |1, 17], are an important topic in current arithmetic geom-
etry research. In a related direction, the Kudla program [3] seeks to establish connections
between cycles on Shimura varieties and modular forms or Fisenstein series. The proof of
the averaged Colmez conjecture |1, 16] has been an application of such ideas.

1.2. This course. The first part of our course will be an introduction to Shimura varieties.
We will learn how to define them in terms of moduli spaces of abelian varieties and how to
relate this definition to the group-theoretic one of Deligne. One of our goals is to obtain
familiarity with the adelic formalism which will become important later.

In the second part of the course, we will study the cohomology of Shimura varieties.
We will first get to know Matsushima’s formula, which expresses the Betti cohomology of
compact Shimura varieties in terms of automorphic representations. We will then learn
about point counting in characteristic p (Langlands—Kottwitz method). The aim here is
to give an orbital integral expression for the number of Fp»-points of the reduction mod p
of the Shimura variety.

1.3. References. The following two are our main background references.

e The introductory lecture notes by Milne [12]. They focus on the group-theoretic defi-
nition of Shimura varieties and the definition of canonical models.

e The first few articles in the lecture notes volume [6]. They provide an introduction to
PEL type Shimura varieties. The article of Yihang Zhu [18] is directly related to the
material of the second part of the course.

1.4. Prerequisites. We will assume as little as possible. The only necessary background
is some familiarity with varieties and algebraic number theory.

In the rest of this introduction, we sketch the definition of Shimura varieties and give
an outline of the course contents.

1.5. Shimura data. Shimura varieties are attached to Shimura data. The formalism
starts with a connected reductive group G over Q. For example, G might be one of the
following.

e G= GLQ
e G = GSpy, the general symplectic group in 2g variables. Let J = (—L, 1"’) be the
matrix defining the standard symplectic form on Q9. Then GSp is defined by

GSpyy(Q) = {9 € GLyy(Q) | tg-J-g=c-J for some c € Q*}. (1.1)

It is related to the usual symplectic group Spy, by the exact sequence

1 — Spy, —* GSpy, —» GLy —> 1.
The map c is called the similitude factor. Note that GSp, = GLg and Sp, = SLg,
recovering the previous example.

e G = U(V), a unitary group. Let K/Q be an imaginary quadratic extension. (This
means that R®@g K = C.) Let V be an n-dimensional hermitian K-vector space. If V'
is not positive or negative definite then U(V') can occur as part of a Shimura datum.

Next, the formalism requires the datum of a homomorphism of real algebraic groups

h:C* — G(R) (1.2)
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which satisfies certain axioms introduced by Deligne |2]. Such an h is called a Deligne
homomorphism. If g € G(R) is a real point of G, then we may conjugate h to define a
new Deligne homomorphism,

(9hg™")(2) := gh(z)g ™.
Let S, € G(R) denote the centralizer of h, meaning the subgroup of elements g with
ghg™' = h. The quotient X = G(R)/S} is precisely the set of Deligne homomorphisms
that are conjugate to h. An important consequence of Deligne’s axioms is that X is a finite

union of hermitian symmetric domains for G(R). In particular, it is a complex manifold.
The pair (G, X) is called a Shimura datum.

Example 1.1. Consider G = GLy. We can embedd C into Ms(R) as R-algebra by
. a —b
h(a + bi) == <b a)'

If we restrict this embedding to unit groups, then we obtain a Deligne homomorphism h :
C* — GL2(R). Its centralizer is precisely h(C*) and the quotient X is the set of complex
structures on R2. Since C* is connected and since GLg(R) has two connected components,
X has two connected components. We want to give a more explicit description of X.

Recall that P*(C) is the space of complex lines in C2. Clearly, the Lie group GLo(C)
acts on it by its natural action on C2. The subgroup GLy(R) preserves the real projective
line P!(R) and hence acts on the complement,

ar +b
GL2(R C\R, ST = . 1.3
(®) O OR, gor=2T10 (13)
The complement C\R is the union of the upper and lower half plane which we often denote
by H*. As an open subset of C, it is naturally a complex manifold. Let us compute the

stabilizer of ¢:

. ai+b ) )
i = — <— —c+di=ai+b
ci+d (1.4)
<~ a=d, c=-b.
That is, the stabilizer of ¢ is precisely h(C*). Moreover, it is clear that GLy(R) acts

transitively on HT because
a b\ . ;
< 1> -4 =ai+Db.

X 5 HE, ghgle—g-i (1.5)
as smooth manifolds in a GLa(R)-equivariant way. We have not defined the complex
structure on X, but it is, in fact, given by the complex structure on H* under (1.5).

Hence, we see that

Remark 1.2. Some groups, such as GL,, with n > 3, cannot occur as part of a Shimura
datum. For example, the dimension of the symmetric space for GL3(R) is

dim SL3(R) — dim SO(3) =8 — 3
which is odd and hence cannot be a complex manifold.

1.6. Shimura varieties over C. Given a Shimura datum (G, X), one next defines a
complex variety in the following way. Let A denote the ring of adeles of QQ, and let
A = Ay x R be its factorization into finite and archimedean part. (We will review these
definitions later in the course.) Given an open compact subgroup K C G(Ay), the quotient
G(Af)/K is a discrete countably infinite set with transitive G(Ay)-action. Hence, the
product X x G(Ay)/K is a countable union of copies of X. We consider the diagonal
action

G@Q) O X x G(Af)/K.
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If K is small enough then the G(Q)-action is free. (The technical term is “neat” and we
will get to know it later in the course.) It is also properly discontinuous, so we can form
the quotient complex manifold

Shy (G, X)(C) = GO\ (X x G(Af)/K). (1.6)

At this point, we have defined the complex points of the Shimura variety for Shimura
datum (G, X) and level K as a complex manifold. The theorem of Baily-Borel states that
there is a unique way to endow it with an algebraic structure.

Theorem 1.3 (Baily—Borel, see [12, Corollary 3.16]). There ezists a quasi-projective
complez variety Shi (G, X)c such that there exists an isomorphism of complez manifolds
Shi (G, X)c(C) = Shi (G, X)(C). This variety is unique up to isomorphism.

Remark 1.4. Simple examples of non-unique algebraic structures on complex manifolds
can be found in [7].

Example 1.5. Let us again consider the case G = GL2 and let us give an example of a
connected component of (1.6). Let Z =[] Zyp be the subring of integral elements of
Ay. For n > 1, consider the kernel

p<o0

K (n) = ker (GLg(Z) —s GLy(Z/nZ))

which is an open compact subgroup of G(Ay). It is small enough (in the above sense) if
n > 3. The intersection

I'(n) := GL2(Q) N K (n)

is the classical congruence subgroup

T(n) = {7 € GLy(Z) ‘ y= (1 1) mod n} .

The quotients T'(n)\H' and I'(n)\H~ will be two of the connected components of the
complex manifold Shg(,,)(GLa, H*).

1.7. Shimura varieties over number fields. Finally, one descends Shi (G, X) to a
number field. Starting from a Shimura datum (G, X), Deligne defines a number field
E C C called the reflex field. In a suitable sense, it is the smallest field over which the
conjugacy class X is defined.

Example 1.6. Consider the three examples from §1.5.
e If G = GLy or more generally G = GSp,,, then the reflex field is Q.

e If G = U(V) is a non-definite unitary group for an imaginary-quadratic field K/Q,
then the reflex field is the subfield £ C C that is isomorphic to K.

Deligne [2] gave a definition of canonical model of Shi (G, X)c over E. It is a variety
Shi (G, X) over Spec(E) together with an isomorphism

C ®p Shi (G, X) =5 Shg (G, X)c

that satisfies a certain reciprocity law for complex multiplication points. Deligne proves
that the canonical model Shy (G, X) is unique up to isomorphism if it exists.

Theorem 1.7 (Borovoi, Milne [10]). For every Shimura datum, the canonical model exists.

Definition 1.8. Let (G, X) be a Shimura datum with reflex field £ and let K C G(Ay)
be a sufficiently small level subgroup. The Shimura variety of level K attached to (G, X)
is the canonical model Shi (G, X) from Theorem 1.7.
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Remark 1.9. Historically, the study of Shimura varieties started with Shimura in the
1960s. He first considered moduli spaces of abelian varieties with Polarization, Endomor-
phisms, and Level structure (PEL). These are the Shimura varieties defined by PEL type
Shimura data.

Shimura also studied several non-PEL cases and defined the corresponding Shimura
varieties as varieties over number fields. Deligne [2] gave a group-theoretic framework for
Shimura’s work. His definition in terms of a reciprocity law for complex multiplication
points is extrapolated from the Shimura—Taniyama reciprocity law for abelian varieties
with complex multiplication. Deligne also constructed the canonical model for abelian
type Shimura varieties. The proof of existence in the general case was completed by Milne
based on ideas of Borovoi. See here for a short summary of the history by Milne [11, §6].

Example 1.10. Consider the two cases from Example 1.6. The unitary group U(V') has
no PEL type Shimura data. For the group GSp,,, there exists a PEL type Shimura datum
(GSpyy, X ). Consider a principal congruence level subgroup

K(n) = ker (GSpQQ(Z) — GSpQQ(Z/nZ))

with n > 3. Then the canonical model Sh,)(GSpg,, X) can be described as a moduli
space of principally polarized abelian varieties with level-n-structure. For example, if we
look at C-points and specialize to GLo, then we obtain

Shg (n)(GL2, X)(C) — {(E,n)/C}/ ~ (1.7)
where the right hand side denotes the set of isomorphism classes of pairs (F,n) with
e F an elliptic curve over C,
e 1 : (Z/nZ)®? = En] a choice of basis for the n-torsion.

The datum 7 is called a level structure for E. Proving (1.7) will be one of our first goals.

1.8. Further topics. We will say more about this when the time comes. For now, let us
start looking at Shimura varieties in detail.

a2
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Part 1. The Shimura variety of GLg
2. THE UPPER HALF PLANE

In Example 1.1, we have introduced the action of GL2(Q) on the union of upper and
lower half plane H* = C\R. Recall that it is given by

a b at +b
<C d> = cer+d’
In Example 1.5, we have seen that we are especially interested in actions by subgroups
such as GLg(Z) and T'(n). Our aim in this section is to give a definition of such arithmetic
subgroups and to prove properties about their action on H*.
Note that elements of GL2(Z) have determinant 1 or —1, and that the elements of
determinant —1 interchange upper and lower half plane. So we will focus on the action of
SL2(Q) on the upper half plane H C H*.

2.1. The fundamental domain. Let F be the area defined by
1
f:{TEH‘|T|21and—§§Re(T)§ 3 (2.1)

Its interior F° is the open subset where |7| > 1 and —1/2 < Re(7) < 1/2.

N

ST'S

+1

FiGURE 1. The area F is depicted in grey. The remaining areas show
translates of F under the action of the elements S and T defined in (2.3).
By Proposition 2.1 and Remark 2.2, these translates cover all of H. The
picture is taken from [141, §VII].

Proposition 2.1. The set F is a fundamental domain for the action of SLa(Z)/{£1} on
H. That is, it has the following two properties.

(1) For every T € H, there exists v € SLa(Z) such that vyt € F.
(2) F° N~F° =0 whenever v ¢ {£1}.

Proof. Fix 7 € H and let v = (‘; fl) € SLy(Z) be any element. By direct computation, we
see that

Im(yr) = Im ((aT +b)(er — d)> _ (ad = be)Im(7) Im(7)

= . 2.2
ler + d|? ler + dJ? ler + d|? (22)

The denominator |c7+d|? defines a positive definite quadratic form in (¢, d) € Z2. It hence
takes a minimum on the set of (¢, d) that occur as the bottom row of an element of SLa(Z).
(These are precisely the (¢, d) with ged(c,d) = 1.) So we see that {Im(y7) | v € SLa(Z)}
has a maximum.
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Let v be such that Im(v7) is maximal. Consider the two matrices

sz<_1 1), T=<1 1) (2.3)

and observe that they act as the very simple transformations

1
ST =——, Tt=71+1 (2.4)
T

In particular, acting with a suitable power T, m € Z, we can translate y7 to assume it lies
in the strip —1/2 < Re(z) < 1/2. Then also |y7| > 1 because otherwise Im(S~vy7) > Im(y7)
would contradict the maximality of Im(~7). This proves statement (1) of the proposition.
We now prove statement (2). Assume that 7 and y7 both lie in F°, our aim being to
show that v € {#1}. After possibly replacing the pair (v, 7) by (y~1,77), we can assume
that Im(y7) > Im(7). Considering again (2.2), this means that |er + d|> < 1.
Clearly, we now have ¢ = 0 because |c7 4+ d| > 1 for every ¢ # 0 (use 7 € F°). This

means that « is of the form
1 m
=" 1)

for some m € Z. Since both 7 and 7 have real part in (—1/2,1/2), the only possibility
is m = 0. This finishes the proof. O

Remark 2.2. One can show that the matrices S and 7" from (2.3) generate SLo(Z). That
is, every element of SLy(Z) can be written as a product of the three elements S, T" and
T~!. The proof is not difficult and can be found in [14, §VII.1, Theorem 2|.

2.2. Arithmetic subgroups of SLy(Q). We now define arithmetic subgroups of SLy(Q).
Definition 2.3. (1) For n > 1, we define the principal congruence subgroup T'(n) by
['(n) ={y € SL(Z) | v=1 mod n}.

(2) We call a subgroup I' C SLa(Q) arithmetic if it contains a principal congruence group
I'(n) with finite index.

The group SLg has a very interesting property which will come up again later. Namely,
for each n > 1, the projection map

SLy(Z) —s SLa(Z/nZ) (2.5)

is surjective. This is not hard to show directly, but also follows from Theorem 3.15 (2)
below.

Example 2.4. By the surjectivity we just stated for SLs, the image of the projection
map GL2(Z) — GL2(Z/nZ) is the set of matrices with determinant £1. In particular,
this projection is not surjective when n =5 or n > 7.

In the context of Definition 2.3, the surjectivity of (2.5) implies that I'(n) <SL2(Z) is a
normal subgroup of index equal to |SLo(Z/nZ)|. In particular, if a group I" contains I'(n)
with finite index, then it also contains all I'(mn) with finite index.

Proposition 2.5. Let I be an arithmetic subgroup.

(1) There exists a lattice A C Q? such that T C SL(A).

(2) More precisely, there exist an integer n and an element g € GL2(Q), det(g) > 0, such
that

I(m) C glg~' C SLy(Z).
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Proof. The two statements are proved by very simple and universal arguments. First, by
assumption on I', there exists an integer n such that I'(n) C I' with finite index. Let
1, .-, be representatives for the cosets I'/T'(n). Then T stabilizes the lattice

-
A= Z Yi * ZQ.
i=1
Indeed, since vZ? = Z? for every v € I'(n), we can also write A as

A=) -7

vel

and from this second expression the I'-stability is clear. This means that I' C SL(A) which
proves statement (1).

Let A1, A2 € A be a basis as Z-module. Viewing A1 and A2 as column vectors, the base
change matrix g = (A A2) lies in GL2(Q) and has the property gZ? = A. Changing A\
to —Ap if necessary, we may assume det(g) > 0. Then SLy(Z) = g~ ' SL(A)g and hence
gLg™" C SLy(Z).

We still need to show that gI'g~! contains a principal congruence subgroup. This is the
content of the next lemma which completes the proof. O

Lemma 2.6. Let I' C SLy(Q) be an arithmetic subgroup and g € GLo(Q). Then gTg™*
15 again an arithmetic subgroup.

Proof. Let d be the least common multiple of all the denominators of all the entries of
g and g~!. Then, if A € d*mMs(Z) is an integer matrix divisible by d?m, we find
g 1Ag € mMay(Z). This shows that ¢g~'T'(d?>m)g C I'(m) which is equivalent to

[(d?m) C gI'(m)g~". (2.6)
Now, for the given I', choose n with I'(n) C I'. Conjugating this relation by ¢ and using
(2.6), we find T'(d?n) C gI'g~! which proves that gI'g~! is again arithmetic. O

In other words, Proposition 2.5 shows that the arithmetic subgroups in SL2(Q) are
precisely the GLy(Q)-conjugates of groups between SLa(Z) and some I'(n).

2.3. Stabilizers.

Definition 2.7. We say that an arithmetic subgroup I' C SLy(Q) is neat if it is torsion
free.

Proposition 2.8. Let I' be a neat arithmetic subgroup of SLo(Q). Then I' acts with trivial
stabilizers on H. That is, if y7 = 7 for some v €' and 7 € H, then v = 1.

Proof. We have seen in (1.4) that the stabilizer of i € H in GLy(R) is a copy of C*. The
unit circle Ct € C* is compact and equals the intersection C* N SLy(R). For a general
point 7 € H, we can write 7 = g - i for some g € SLa(R):

1 b al/? . .
< 1)( a1/2>-2:az+b.

The stabilizers S; and S; of 7 and i in SLg(R) are then related by S, = gS;g~!. In this
way, we see that for every 7 € H, the stabilizer S, C SLy(R) is isomorphic to C!, in
particular compact.

Assume that v7 = 7, where v € I and 7 € H. This is equivalent to v € I' 1 .S;. Since
I' C SLo(R) is a discrete subgroup, the intersection I' N S; is a discrete subgroup of S;.
Since the discrete subgroups of C! are all finite cyclic (generated by a root of unity), and
since I' is torsion-free by assumption, we see that I' NS, = {1}. Hence v = 1, and the
proof is complete. O
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The next proposition provides a simple criterion for detecting neatness.

Proposition 2.9. For all n > 3, the principal congruence subgroup T'(n) is neat. In
particular, if T C T'(n) is an arithmetic subgroup, then T' is neat.

Proof. The minimal polynomial ®4(7T') of a primitive d-th root of unity has degree ¢(d)
(Euler @-function). Recall that ®4(T) is called the d-th cyclotomic polynomial and that

T —1 =[] ®a(T)
dlm

because the roots of T™ — 1 are precisely the m-th roots of unity, and each such root of
unity is a primitve d-th root of unity for a unique divisor d | m.

The only values for d such that ¢(d) < 2 are 1, 2, 3, 4, and 6. These are precisely the
values for d such that Q({y) has degree < 2 over Q.

Let n > 1 and let v € SL2(Q) be a torsion element, say v = 1. Then the minimal
polynomial of v divides T™ — 1. We know that the minimal polynomial and the char-
acteristic polynomial of a matrix have the same irreducible factors. So the characteristic
polynomial P(T) of v is a product of ®4(7T) with d | m. The only possibilities for P(T')
are hence'

(T—-1)2% (T+1)? (T-1)(T+1), T?°+1, T°+T+1, and T> -T+1. (2.7
If n > 3 and if ~ is integral with v = 1 mod n, then also P(T) = (T — 1) mod n,
leaving P(T) = (T — 1)? as the only possibility. This means that v is either equal to 1

or GL2(Q)-conjugate to (! 1) (Jordan normal form). But v is also a torsion element by
assumption, so v = 1 is the only possibility. O

Exercise 2.10. Extend the argument of the previous proof to GL,,. That is, given n > 1,
find an integer m > 1 such that for v € GL,(Z),

v=1modm = - non-torsion.

Conclusion 2.11. In this lecture, we saw the definition of neat arithmetic subgroups of
SL2(Q). We have seen in Proposition 2.8 that such groups act freely on H. So the quotient
IM\H will be a Riemann surface and the quotient map

H — T'\H (2.8)
a holomorphic covering map in the sense of topology. We have seen in Proposition 2.5
that, in order to study I'\H, we may always assume I' C SLy(Z). Then we can think of

I'\H as being glued from finitely many SLo(Z)-translates of the fundamental domain F
as in Figure 2.1 along their edges.

1The product (T —1)(T + 1) cannot actually occur, of course, because det(y) = 1 for v € SLa(Q). This
does not affect the argument, though.
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3. ADELIC DOUBLE QUOTIENTS

In this lecture, we study the adelic double quotients GL2(Q)\(H* x GLa(Af)/K) and
relate them to the quotients I'\H from the previous lecture. We will first revisit the
definition of the adeles and explain the definition of GL2(Af) as a topological group in
more detail. In fact, we will use this opportunity to also study groups of the form G(Ay)
more generally.

3.1. The adeles. We begin by defining the ring of integral adeles. It is the profinite
ring given by? Z := lim Z/nZ. The transition maps here are given by the projections
Z]mZ — Z/nZ, whenever m | n. Concretely, we have

~

7= {(ajl,xg, ...) € H Z/nZ ‘ Zgn = T, mod n for all d,n > 1}.

n>1
Recall that the Chinese remainder theorem identifies Z/nZ = Hp Z/p*»MZ. If we apply
this identification to each term of the limit, then we obtain an isomorphism

/N HZp, (r1,22,...) — ((wl,xp,xpz,...))p. (3.1)
2

We endow each Z, with the usual p-adic topology and their product with the product
topology. Then (3.1) is an isomorphism of topological rings.

Definition 3.1. The ring of finite adeles is defined by Ay := Q ®z Z. Since Z is torsion-
free, we can view it as a subring Z C Ay. We endow A, with the topology such that Z is
an open subring.

Let us unravel this definition. First, on the level of rings, A is the ring of fractions

x/m with x € Z and m > 1, where the usual rules of arithmetic apply. Using (3.1), we
can more explicitly describe it as the subring

ar={@y) e]Q

xp € Zyp for almost all p}.

Now we describe the topology. In Z a neighborhood basis of 0 is given by all the kernels
of the projections Z — Z/nZ. These are precisely the ideals nZ. Under the isomorphism
(3.1), they are the subsets of the form

HmeZp X H Zp
peS pEsS

where S is a finite set of primes and (mp)pes a tuple of non-negative integers. Such sets
forming a neighborhood basis of 0 means that the sets

{m—i—nZ!er,nZl} (3.2)
give a basis of Ehe topology on Z. Declaring ZCA ¢ an open subring then simply means
that the sets nZ also form a neighborhood basis of 0 in A¢. Equivalently, the sets

{x—l—ni‘xEAf,nzl} (3.3)
provide a basis for the topology on Ay.

Definition 3.2. The ring of adeles is defined as the product A := Ay x R endowed with
the product topology.

Proposition 3.3. The subring Q C A is discrete.

2We use lim and colim to denote the limit and the colimit. In other references, these might be called
lim and lim.
— —
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Proof. By definitions, the product U = A (—1,1) is an open subset of A. The intersection
U NQ consists of those rational numbers that lie in Z = 7N Q and in the interval (—1,1).
In other words, U NQ = {0}. Thus, {0} C Q is an open subset for the subspace topology.
By additive translation invariance of the topology (A is a topological ring), the same
argument applies for all rational numbers. This shows that the subspace topology on Q
is the discrete topology as claimed. O

Let F/Q be a finite extension. The adeles of F' can be defined in the same way as for
Q. First, we define the integral adeles with profinite topology

Op := lim O ~ Ory. 3.4
poi= lm Op/a — 1;[ Fp (3.4)
The we tensor by Q over Z, or equivalently by F' over Op, to define the finite adeles:

Ap’f = Q®z 5F

~

— {(:Up) € 1;[Fp ’ xp € OFy for almost all p}. (3:5)

Again, the topology on Ap f is defined by declaring GF to be an open subring. Finally,
we define the adeles as the product

Ap = AFJX(R(XJQF) = AFJX H R x H C. (3.6)
o:F—R {o,c}:F—C

Here, the real factors have their real vector space topology, and the last two products are
over the real (resp. complex) places of F'.

Recall that Op is a free abelian group of rank equal to d = [F' : Q]. Let a1,...,a4 be a
Z-module basis of Op. Such a choice provides isomorphisms of Z—, Ay-, resp. A-modules

ZM 5 Op @7 Z, A} "5 Fogh;, A" FggA. (3.7)

We endow Z”, A% and A™ with the product topology and use the isomorphisms in (3.7) to
define from this the topology on the three tensor products. This topology is independent
of the choice of ay, ..., aq.

Remark 3.4. The previous definition is a general principle. Let R be a topological
ring and let M be a finite free R-module. Any choice of R-basis aq,...,aq defines an
isomorphism R? 5 M and, in this way, endows M with a topology.

Any two such isomorphisms differ by an element of GL4(R). Since the action of every
g € GL4(R) on R? is continuous, the topology is independent of the chosen basis.

Proposition 3.5. Multiplication defines isomorphisms of topological rings
0F®ZZL>6F, F®@AfL>AF7f, F®QA;>AF.

Proof. Every ideal a C Op contains an ideal nOp with n € Z>1. So we can rewrite (3.4)
as Op = 1lim Op/nOp. Having chosen ay, ..., a4, we obtain

d
6F = lim (EBZ/TLZ . ai)

=1

(imZ/nZ) - o

|2
.@&

=1

Z-ai.

lz
P-

1

-.
Il
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This shows that O ®7 7 = 6}7 as topological rings. The statements for Ap ; and Ap
follow from this. O
Corollary 3.6. Let F/Q be a finite extension. Then F C Ap is discrete.

Proof. Since Q is discrete in A, we have that Q" is discrete in A™. Choosing a QQ-basis
a = (ag,...,aq) for F, we obtain a commutative square of the form

Q'IL ( ATL

« e

F——— Ap.

By Proposition 3.5, the right vertical identification is a homeomorphism. Hence we obtain
that F'is discrete in Ap. O

3.2. Groups of the form G(Ay). Let us formulate the problem more generally.

Question 3.7. Let X be an affine variety® over Q and let R be a topological Q-algebra.
We assume that points of R are closed. For example, R could be R, C, Q,, Ay or A. How
to define the topological space X (R) in a natural way?

The answer is very simple. Let us write A" = Spec Q[t1, ..., ty] for affine N-space over
Q to avoid confusion with the adele notation. We endow AY(R) = RY with the product
topology.

Let f1,..., fm € Q[t1,...,tx] be polynomials and let X = V(f1,..., fm) € A" be their
vanishing locus. Then X (R) C RY is a closed subset because it equals the intersection
ity fi_l(O), and we endow it with the subspace topology.

Definition 3.8. Let X be an affine Q-variety. Choose a presentation ¢ : X = V(f1,..., fm)
as above. The topology on X(R) is defined as the subspace topology with respect to
o(R): X(R) = RN,

Lemma 3.9. This topology on X (R) is independent of the choices of N, (f1,..., fm) and
®.

Proof. Assume that we are given two affine varieties V(f1,..., fm;) € AM as well as
V(915 9my) € AN2. Assume that

0:V(fi,.oos fy) = V(g1 Gmsy)

is an isomorphism of Q-varieties. Then ¢ and 1) = ¢! lift to morphisms ® : AN1 — AN
and ¥ : AN2 — AN The induced maps

RV 2 RV
v
are continuous because they are given by polynomials. Hence their restrictions ¢ and ¢
are continuous as well. Since 1) = ¢!, this shows that ¢ is a homeomorphism. U

Example 3.10. Consider the group variety GL,,. One possible presentation as a closed
subset of an affine space is given by

GLn ;> V(l —t-det ((tij)ijl)) c A Xspec((@) A"

2

g=(tij)ij=1 — (det(g)™", 9).
For example, if n = 1, we recover the closed immersion

G — A%, t— (t711).

4

3More generally, an affine finite type Q-scheme.
G is just another notation for GL;. The notation symbolizes multiplicative group.



INTRODUCTION TO SHIMURA VARIETIES 13

According to Definition 3.8, the topology on GL,(Af) is then given as the subspace topol-
ogy with respect to

GLn(Af) = Ay x M (Ay), g+ (det(9)™", 9).
The product Z x Mn(z) is an open subset on the right hand side. So the intersection
GLn(Z) = GLn(Ay) N (Z x M, (Z))
is an open subset of GL,,(Af). (The elements of GL,(Z) are precisely those elements of

GL,(Af) N M,,(Z) whose inverse determinant again lies in Z.) As a closed subset of the
profinite set Z x My, (Z), GL,(Z) is again profinite. In fact, we have

GL,(Z) = lim GL,(Z/mZ)

as topological group. The principal congruence subgroups
K (m) = ker (GL,(Z) — GL,(Z/mZ))
form a neighborhood basis of 1 in GL,,(Ay).
Example 3.11. We always view A? with the topology coming from A? = Gm(Ay). Then

the inclusion map A? — Ay is continuous because it is induced from the morphism of

varieties G, — A, t — t. But it is not an open immersion. For example, Z* is open in
A?, but not in Ay.

Exercise 3.12. Prove the claim in the previous example. That is, show that none of the
open subsets 1+ nZ C Z, which form a neighborhood basis of 1 € Z, is contained in Z*.

Example 3.13. Let GG be a general linear algebraic group over Q. There always exist some
N > 1 and a closed immersion G — GLy. Then G(Ay) € GLx(Af) has the subspace
topology. In particular, the intersections G(Ay) N K(m) with all congruence subgroups
form a neighborhood basis of 1 € G(Ay).

This applies, for example, to the standard representations

SLy — GLQ, Sp29 — Gng, GSPQg — Gng .
Let V be a quadratic Q-vector space. Then it applies to the closed immersions
SO(V) — GL(V), O(V) <= GL(V).

Remark 3.14. For local fields k, such as k£ € {R,C,Q,}, the situation is more straight-
forward in the following sense. If X — Y is an open immersion of k-varieties, then
X (k) — Y (k) is an open immersion with respect to the topologies from Definition 3.8. In
particular, the topology on X (k) from Definition 3.8 agrees with the subspace topology
in Y(k).

This remark applies, for example, to

GL.(R) C Mu(R) and  GL,(Q,) C M, (Q,).

3.3. General adelic double quotients. Let us begin with a general theorem which we
will not prove.

Theorem 3.15 (|12, Theorem 4.16|). (1) Let G/Q be a connected reductive algebraic
group. Then, for every compact open subgroup K C G(Ay), the double quotient G(Q)\G(Ay)/K
s finite.

(2, Strong approzimation) Let G/Q be a connected, simply connected semi-simple group of
non-compact type. Then G(Q) is dense in G(Ay). In particular, for every compact open
subgroup K C G(Ay),

GAf)={y-k | veG@Q), ke K}.
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As our first application, we obtain a more concrete description of the adelic double
quotients that make up the complex points of a Shimura variety (1.6). Let (G, X) be a
Shimura datum and let K C G(Ay) be a level subgroup. In particular, G is a connected
reductive group over Q, so Theorem 3.15 (1) applies. So we find finitely many double
coset representatives gi,..., 9, € G(Ay),

T

G(as) =] | GQgiK. (38)

=1

Each of the sets on the right hand side of (3.8) is G(Q)-stable. Moreover, G(Q) acts
transitively on the cosets G(Q)g; K/ K, and the stabilizer of the coset ¢; K € G(Q)g; K/K
is the subgroup

T, :=GQ)NgKg; "

So we obtain

T

G\(X x G(Ap)/K) = | |GQ\(X x G(Q)g;K/K)
=1
(3.9)

= |_| LA\X x {g:K}.

=1

If K is small enough, which we will make precise for GL2 in a minute, then each T'; is
torsion-free and acts without stabilizers on X. Each quotient I';\ X is then a complex
manifold in the same way as we saw before in Conclusion 2.11.

Exercise 3.16. Work out (3.9) for yourself. For example, first prove the following variant.
Let H be a group acting on sets X and Y. Let Y = ;G - y; be the decomposition of Y
into orbits and let I'; be the stabilizer of y; in H. Then

H\(X xY) =5 | |Ti\X.
i€l

Specialize to the situation H = G(Q) and Y = G(Ay)/K.

Exercise 3.17. The group SL, is connected, simply connected, semi-simple and of non-
compact type, so SL,(Q) C SL,(Ay) is dense (Strong approximation, see Theorem 3.15
(2)). Using this property, show that

SL,(Z) — SL,(Z/mZ)
is surjective for all m > 1. In particular, this shows the surjectivity of (2.5).

3.4. Back to GLa. The description in (3.9) is still quite abstract. We now want to make
it completely explicit for congruence subgroups of GLo. Let us begin by studying G,.

Proposition 3.18. Let K(m) = ker (2X — (Z/mZ)*) be the m-th congruence subgroup
of A?. Then there is an isomorphism

Q%\AF /K (m) — (Z/mZ)*. (3.10)

Proof. Let x = (), € A? be an element. Here, the component x;, lies in Q,', and almost
all components x, even lie in Z;. For each prime p, let v, : Q; — 7 denote the valuation
normalized by v,(p) = 1. Take the vector of valuations of all the entries of z:

(ep)p,  €p = vp(Tp).
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Only finitely many of the e, are non-zero. There is a rational number in Q¢ with the
same valuations, namely t = Hp p®. So t~ 'z lies in Z* which shows that every double

coset in (3.10) has a representative in Z*. Purely formally, we now obtain
QZ\AF /K (m) = (Q%g NZ*)\Z" /K (m). (3.11)

The rational number ¢ is, in fact, uniquely determined which reflects that QX NZX = {1}.
So (3.11) simplifies to Z* /K (m), which is isomorphic to (Z/mZ)* as claimed. O

We write GL,,(Q)>¢ for the subgroup of elements of GL,,(Q) with positive determinant.

Proposition 3.19. Let K C GL,(Ayf) be an open compact subgroup. The determinant
map det : GL, (Ay) — Ajf induces a bijection

det : GLn(Q)>0\ GLy(Ay)/K — QZ,\AT / det(K). (3.12)

Proof. The group SL,, is connected, simply connected, semi-simple and of non-compact
type, so SL,(Q) C SL,(Ay) is dense (Strong approximation, see Theorem 3.15 (2)). We
will use this property freely.
Consider the determinant map in (3.12). It is clearly surjective because already the
map det : GL,(Af) — A; is surjective. So our task is to prove that (3.12) is injective.
The source in (3.12) is only a set, so we cannot argue with kernels. Instead, we consider
two elements g1, g2 € GLy,(Af) with the same image, meaning that

det(g1) € Q% det(g2) det(K). (3.13)

Our task is to show that g; € GL,(Q)g2K.

First, observe that det : GL,(Q)so — QX is surjective. So we find elements h €
GL,(Q)>0 and k € K such that det(g;) = det(hgak). So after replacing g2 by hgek, we
may assume det(g;) = det(ga).

Next, we consider the conjugate group g2 K gy ! Strong approximation for SL, implies
that

SLn(Ay) = SLn(Q) - (92Kg5 " N SLa(Ay)).
Hence, there are b’ € SL,(Q) and k' € K N SL,,(Ay) with

9195 " = W gak'gy .

This is equivalent to g1 = h/gok’, showing that the double cosets of g; and go are equal as
claimed. (]

Corollary 3.20. Let K(m) C GLa(Ayf) be the m-th congruence subgroup. There is a
bijection of connected components

m0( GLa(Q)\(H x GLa(Af)/K (m))) = (Z/mZ)*>. (3.14)

Moreover, the connected components are all of the form T\H with T = GL2(Q)so N
gK(m)g~! for some element g € GLo(Ay).

Proof. The two connected components of H* are interchanged by the elements of negative
determinant in GL2(Q). Hence, we obtain

7r0(GL2(Q)\(]HIi x GLa(Af)/K(m))) — mo( GL2(Q)>0\(H x GL2(Af)/K(m)))

—  GL2(Q)>0\ GL2(Af)/K(m).
(3.15)
Here, the second isomorphism simply used that H is connected. Next, observe that

L = det(K(m)) = ker(Z* — (Z/mZ)*)
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is the m-th congruence subgroup in A;f. So, by Proposition 3.19, the determinant allows
to rewrite (3.15) as

det : GLQ(Q)>0\ GLQ(Af)/K(m) ;> QiO\A? /L.

By Proposition 3.18, the last expression can be identified with (Z/mZ)* as claimed.
The final statement (each connected component being isomorphic to some I'\H with T’

of the form GL2(Q)=0NgK(m)g~1) is a special case of the decomposition in (3.9), except

that we have already replaced (H*, GLy(Q)) by (H, GL2(Q)0). O

Let us go further and prove a criterion that ensures that all the occurring I" are torsion
free. The arguments will be similar to the ones we saw in §2.3.

Proposition 3.21. For any m > 3 and g € GLa(Ay), the intersection I' = GL2(Q) N
gK (m)g~! is torsion free.

Proof. Let v be an element of K(m). Then, since K(m) C GLg(z), the characteristic
polynomial P, (T) lies in Z|[T]. Since v = 1 mod m, we even know Py(T) = (T —1)? mod
m. In general, for every n > 1 and any ring R, the characteristic polynomial of an element
from GL,(R) is invariant under conjugation. So, in our setting, the same properties hold
for Py (T) for v € gK(m)g~1.

Assume that v € T' = GL2(Q) N gK(m)g~!. Then, the characteristic polynomial of y
has rational coefficients, and hence lies in the intersection

QTN ((T = 1)* + nZ[T]).

This means that Py (T) € Z[T] and Py(T) = (T — 1)® mod m.

If v is a torsion element, then we have already seen during the proof of Proposition 2.9
that P, (T") comes from the list (2.7). By the congruence condition we just established,
the only possibility is Py(T) = (T — 1)2. The matrix (!]) is not torsion, so cannot be
the Jordan normal form of v. We conclude that v = 1, showing that I' is torsion-free as
claimed. O

Conclusion 3.22. Let us come back to the situation of Corollary 3.20. Assume that
m > 3. Then the connected components of

GL2(Q)\(H* x GLa(Ay))

are in natural bijection with (Z/mZ)*. Each connected component is of the form I'\H for
a torsion free arithmetic subgroup I' C SLy(Q).
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4. GROUP SCHEMES

Our next aim is to endow the complex manifolds Shy (GLg, H*)(C) with an algebraic
structure and to even define them over Q (see 1.7). This relies on their description as
moduli spaces of elliptic curves:

Definition 4.1. Let k be a field. An elliptic curve over k is a proper, smooth, connected
and 1-dimensional k-group scheme.

Later in the course, we will also consider other Shimura varieties and describe them as
moduli spaces of abelian varieties:

Definition 4.2. An abelian variety over k is a proper, smooth and connected k-group
scheme.

In this lecture, we will first discuss some background on group schemes. This will also
be useful for talking about groups like GLy, GSpy, etc. which we have secretly already
considered as group schemes over SpecZ or Spec Q in previous lectures. In general, group
schemes are also an interesting topic in itself and come up in many areas of algebra.

Recommended reading closely related to our course: My lecture notes on moduli
spaces of elliptic curves [9]. Parts of our discussion here are taken from [9, §2].

General reference on algebraic groups: Milne’s book [13], especially §1 about basic
definitions.

4.1. Basic definitions. We give the definition over a general base S, but the case to keep
in mind is S = Spec(k) for a field k.

Definition 4.3. Let S be a scheme. A group scheme over S is a pair (G, m) that consists
of an S-scheme G and an S-scheme morphism (called multiplication morphism)

m:GxsG— G
such that for every S-scheme T, the resulting map on 7-valued points
m(T): G(T) x G(T) — G(T)

makes G(T) into a group. We call G commutative if G(T) is a commutative group for
every T'.

Observe that for every morphism w : 77 — T of S-schemes, the diagram

a(r) x ¢(1) — " G (4.1)
a1 x (1) I qry

commutes which means that v* : G(T') — G(T") is a group homomorphism. Furthermore,
if (G, m) is a group scheme over S, then the Yoneda Lemma implies the existence of two
additional S-scheme morphisms:

e: S — G, (neutral element section) Lo

i:G— G, (inversion morphism). (42)
The first one is simply the neutral element e € G(S) of the group G(S). Given u :
T — S, the pullback u*(e) = eowu € G(T) is the neutral element of G(T'). The second
one is characterized as the unique morphism that provides the inverse in all the groups
{G(T)}r-s:

i(T): G(T) — G(T), g—g "
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The datum (G, m,e, i) satisfies the group axioms in a scheme sense, meaning that the
three diagrams

SxsG— L GxsG (4.3)
GxsG-TLGxsG  GxsGxsG 8 Gxs@ (4.4)
\L J{m idxnzi lm
S £ G, G xsG—= G.

all commute. In fact, one may also reverse the above logic and obtains the more classical
definition of a group scheme over S: It is the same as an S-scheme G together with a
morphism m : GxgG — G such that there exist morphismse : S — G andi: G — G such
that the diagrams in (4.3) and (4.4) commute. The group scheme (G, m) is commutative
if and only if multiplication interchanges with switching the factors in the sense that also
the following diagram commutes:

7h' hv
GXSGMGXSG (4.5)

N

G.

Definition 4.4. Let (G1,m1) and (G2, m2) be group schemes over S. A group scheme
morphism from G to G is a morphism of S-schemes f : G; — G4 such that moo(fx f) =
f omi. Equivalently, it is an S-morphism f such that for all T"— S, the induced map

f(T) : Gi(T) — G2(T)
is a group homomorphism.

If (G, m) is a commutative S-group scheme, then Endg_grp.sen. (G, m) forms a (possibly
non-commutative) ring because endomorphisms can be “added” (meaning multiplied in
G) and multiplied (meaning composed). Concretely, sum and product of two elements
fyg € End(G) are given by

f+g:=mo(f.g), [fg:=Ffeog

In particular, we can add the identity n times to itself and obtain the n-th power endo-
morphism [n] : G — G. On each of the groups G(T), it is given by [n](g) = ¢". This is
even defined for n € Z by [n] o i = [—n]. In total, these give the ring map

[-]:Z — End(G). (4.6)

Coming back to general group schemes, we next define kernels. This is straightforward
because fiber products exist in the category of S-schemes. (Defining quotients, on the
other hand, is tricky. We refer to [9, §13] for some cases.)

Definition 4.5. Let f : G; — G2 be a homomorphism of S-group schemes. Let ex : S —
G2 be the neutral element section of G5. The kernel of f is defined as the fiber product

ker(f) —— S (4.7)

|k

G ——— Ga.
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It is clear from its definition that ker(f) has the property
ker(f)(T) =ker (f(T) : G1(T) — G2(T)) . (4.8)

The multiplication morphism of G restricts to a multplication on ker(f) which makes
ker(f) into a group scheme:

ker(f) x s ker(f) — — — = ker(f) (4.9)
G xsG m G.

Remark 4.6. Recall that if X — S is a separated morphism, then every sectiono : S — X
is a closed immersion. Thus, if G — S is a separated group scheme (e.g. affine or proper),
then the neutral element e is a closed immersion. It follows that if in (4.7) Gy — S is
separated, then ker(f) — Gy is a closed immersion.

4.2. A commutative example: The multiplicative group. Assume that S = Spec R
is affine. Define G,, s = Spec R[t,t ] which we would like to make into a group scheme
over S. Recall that Spec(—) is an anti-equivalence from R-algebras to affine S-schemes.
We define the multiplication map m : Gy, s x5 Gy, 5 = Gy 5 as Spec(m*) where m* is

m* : R[t,t7'] — R[t,t"'| ®@r R[t,t7"]

(4.10)
t—s t@t.

We next verify that this makes G,, g into an S-group scheme. For every S-scheme T', we
identify
Gins(T) = Or(T)* i
g:T = Gy, 5] — g*(2).
Note that this map is obviously defined; the fact that it is an isomorphism is the adjunction
Morg(T, Spec(A)) = Hompg(A, Or(T)). Given two morphisms g1,92 : T — Gy,.5, we
compute the (dual of the) composition m o (g1, g2) by

Rit.t7] ™% Rt or Rt 2% opT)
t — t®t — g5 (t)g5(t).

Thus we see that the operation m(T") on Gy, s(T) translates to the usual multiplication
under (4.11). In particular, m(T) is a group structure for every T', and hence (G, s, m)
a group scheme.

We can next calculate the neutral element e and the inversion map ¢ from (4.2). Under
(4.11), the unit element 1 € R* corresponds to

e Rt — R, t—1.

Taking e = Spec(e*) gives the neutral element section. The inversion map i = Spec(i*) is
given by

i*: R[t,t7'] — R[t,t7], t+——th (4.12)
The n-th power maps are given as [n] = Spec([n]*) with
[n]*: R[t,t™ '] — R[t,t7'], t+—t" (4.13)

Note that (4.12) and (4.13) are compatible in the sense that i = [—1], which is always the
case for a commutative group scheme. The next proposition, on the other hand, is very
specific to G,,.

Proposition 4.7. Let S be a connected scheme. Then End(G,, s) = Z.
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Proof. We only consider the case S = Spec(k). The extension to general S can be found
in [9, Proposition 2.12].

By definition, a group scheme endomorphism f of Gy, is the same as f = Spec(f*)
for a unique k-algebra morphism f* : k[t,t71] — k[t,+~!] such that

(f*® fom* =m o f* (4.14)

where m*(t) = t ® t is as in (4.10). Giving a k-algebra morphism f* is equivalent to
specifying its image f*(t) € k[t,t1]*. These units are

E[t,t7 1% = {M" | X € kX ,n € Z}.
If f*(t) = At", then (4.14) evaluated at t becomes

AT @M Z Nt @ E)" (4.15)

which holds if and only if A> = A, meaning A\ = 1. Note that f*(t) = t" precisely defines
the multiplication-by-n morphism [n] (meaning taking n-th power in this context) and
thus End(G,, ) = Z is proved. O

We next determine the kernel p, g := ker([n]). By definition, see (4.7), we need to
compute the fiber product

pn,s —>= 5
|
Cms — s G s.
Fiber products of affine schemes are computed by tensor products of rings, so we get
fin,s = Spec (R ® 1oy, R[t,t=1], testn R[ﬂt_l})
= Spec (R]t]/(t" —1)).
In terms of (4.8) and (4.11), we see
tin 5(T) = {C € OF(T)* | ¢ =1}, (4.17)

That is, py, s is the group scheme of n-th roots of unity. Let us assume that S = Spec(k).
We observe the following interesting phenomenon:

Assume that n is prime to char(k). Then t" —1 € k[t] is a separable polynomial. Hence,
tnie = Speck[t]/(t™ — 1) is an étale k-scheme. On the other hand, if p = char(k) | n, then
t™ — 1 is not separable and k[t]/(t" — 1) is not reduced. For example,

pi = Specklt]/( — 1)
= Specklt]/(t —1)P

s Spec k[e]/(¢?)

(4.16)

is completely infinitesimal. We have the following general results in this direction.

Theorem 4.8 (Cartier, |13, Corollary 8.38]). Let k be a field of characteristic 0 and let
G/k be a finite type group scheme. Then G is smooth.

A morphism f : X — S is said to be finite locally free of rank n if it is finite and if
f+(Ox) is locally free of rank n as Og-module.

Theorem 4.9. Let G be a commutative S-group scheme which is finite locally free of rank
n. Assume that n € Og(S)*. Then G is étale.

Exercise 4.10. Verify the commutativity of (4.3) and (4.4) for (G, m,e,1).
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4.3. A non-commutative example: GL,. Let S = Spec(R) be affine as before. The
(underlying scheme of the) general linear group in n variables over S is defined as

GLn,s = Spec R [tij, 1 <i,5 < n; det((ty)ig) ] -
For every S-scheme T', we can (exercise) identify GL,, (T) with GL,,(Or(T)) by
D [g T — GLn,S] — (g*(tij))i,j' (418)

We have the usual matrix multiplication on GL,,(Or(T)). In terms of (4.18), it comes from
the multiplication morphism m : GL,, s X GL,, s — GL,, s which is given in coordinates
by

n
m*(tij) = Ztik ® tkj-
k=1

The pair (GLj, g, m) is then an S-group scheme. The identity map e = Spec(e*) is given
by
“: Ritgdet(ti)i) ] — Ry ety =4 B
et Rlti, Y et (t) = _
Y v Y 0 otherwise.

The inverse of the matrix (¢;;)ij € GLy(R[tij, det((¢;;)i;)1]) has an expression of the form
det((ti;)ij) " - (sij)i; where the s;; are polynomials in the variables ¢;;. (In fact, the s;;
are the entries of the adjugate matrix.) Then the inverse morphism ¢ : GL,, g — GLj, g is
given in coordinates by

i (the) = det((tig)ig) ™ ske-
Clearly, GL1 g is the same as the multiplicative group G, 5. For every S-scheme T', we

have a determinant morphism GL,(O7(T)) — Or(T)*. With respect to our identifica-
tions (4.11) and (4.18), these come from the group scheme homomorphism

det : GLn,S — Gms, det*(t) = det((tij)ij). (4.19)

Its kernel ker(det) is the group subscheme SL, ¢ C GL, g. Being a closed subscheme of
an affine scheme, it is again affine. It can be described explicitly by

SLn’S = Spec (R[tij, 1 S i,j S ’I’L]/(det((ti]’)i]’) — 1))

4.4. Linear algebraic groups. We now specialize to the case of finite type group schemes
over a field k. A general classification theorem essentially reduces their study to the affine
and the proper case.

Theorem 4.11 (see [13, §8a]). Let G/k be a connected finite type k-group scheme. Then
there ezists a unique mazximal normal, connected, affine closed group sub-scheme N C G.
The quotient G/N is an abelian variety.

Affine finite type k-group schemes are also called linear algebraic groups. The reason
for this name is that they can always be realized as a group of linear automorphisms of
some vector space. That is, they always embed into some GL .

Theorem 4.12 (see |13, Corollary 4.10]). Let G be an affine finite type k-group scheme.
Then there exist an integer n and o closed immersion group scheme morphism G — GLy .

4.5. Abelian varieties. We have already defined abelian varieties in Definition 4.2. The
main point of this definition is that abelian varieties are proper. This implies that they
are necessarily commutative which also explains their name.

Theorem 4.13 (|9, Corollary 3.7]). Let (A, m) be an abelian variety over k. Then (A, m)
is a commutative group scheme.
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5. ELLIPTIC CURVES

In the previous section, we defined elliptic curves as proper, smooth, 1-dimensional,
connected group schemes and stated that they are always commutative (Definition 4.1
and Theorem 4.13). However, this definition does not shed any light on how to actually
write down an example of an elliptic curve. For this reason, we want to next learn about
two equivalent definitions:

e An elliptic curve over a field & is a pair (E, e) consisting of a proper smooth connected
curve E/k of genus 1 and a rational point e € E(k).

e An elliptic curve over a field k is a smooth cubic curve £ C IF’% that contains the point
[0:1:0].
Passing between these definitions involves the theory of curves and line bundles. A careful
discussion with many details can be found in [9, §4 — §7|, but some of these details are
tangential for our course. So we will give a shorter and more high-level treatment.

5.1. Cubic curves are elliptic curves. Our first aim is to construct elliptic curves. Let
h(z) = 23 + ax + b be a monic cubic polynomial (without z%-term). A polynomial of the
form

f=v*—h(z) (5.1)
is called a simplified Weierstrass equation. Let
F(X,Y,Z)=Y?Z - X3 —aXZ? - 07> (5.2)

be the homogenization of f, and let E = V4 (F) C P? be its vanishing locus.
Lemma 5.1. Assume that char(k) # 2 and that h is separable. Then E is a smooth curve.

Proof. First observe by direct substitution in (5.2) that, on the level of sets, ENV,(Z) =
{[0:1:0]}. We can thus proceed by checking the Jacobi criterion on E N Dy (Z) and for
the point [0:1:0].
By definition, we have
END(Z) =5 V(y? — h(z)) C A.
The Jacobi matrix of the Weierstrass polynomial is the gradient

(0f/0z, 0f/0y) = (=W (x), 2y). (5.3)
Let e € EN D4 (Z) be an arbitrary point. Let x(e) be the residue field of e and let
(e1,e2) € r(e) x k(e) be the coordinates of e.> If ey # 0, then also 2e5 # 0 by our
assumption char(k) # 2, meaning 2y does not vanish in e. If e = 0, however, then
h(e1) = 0 since f(e1,e2) = 0. We have assumed that h is separable, which is equivalent
to h(z) and h'(z) being coprime. Thus h'(e;) # 0. In summary, we have seen that the
gradient (5.3) does not vanish in e.

We now consider the point [0: 1 :0]. An affine chart is given by

END,(Y) = V(2 -2 —azz? — b2%) C AL
In these coordinates, [0 : 1 : 0] maps to (0,0). Moreover, the gradient of that equation is

(=322 —az?, 1 —2azxz — b2?). (5.4)
Its second entry does not vanish in (0,0), so the Jacobi criterion holds in (0,0). The proof
of the lemma is now complete. O

Theorem 5.2. Let E = V. (F) C P} be a smooth cubic curve, and let O € E(k) be a
rational point. Then there exists a unique group scheme structure + : E Xgpeen) £ — E
on E with neutral element O. By Theorem 4.13, it is necessarily commutative.

5Given a scheme X and a point z € X, we use £(z) = Quot(Ox . /m,) to denote the residue field in z.
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FIGURE 2. The R-points of the two Weierstrass equations 32 = 23+ 1 and
y? = 23 —z. Note that V(y? — (2% —2)) C A2 is a connected scheme. Only
its R-points when endowed with the real topology are disconnected.

There are two approaches to this theorem. Today, we will explain the more elementary
one, which is to give a geometric construction of 4 in terms of the geometry of P2. A
beautiful aspect of this construction is that it illustrates why cubic curves behave so
special. Details on some calculations behind this approach may be found in Silverman’s
book [15, §IIL.1-3].

The second approach is based on line bundles, the Riemann—Roch Theorem, and the
Yoneda Lemma. It is more conceptual, and some of its aspects will be discussed in more
detail later in the course. A reference is |9, §7].

Proof of Theorem 5.2. We will admit the uniqueness part of the theorem, which is a gen-
eral property of abelian varieties |9, Proposition 3.6]. Thus, the main problem is to
construct the addition law.

Lemma 5.3. Let F € k[X,Y, Z] be homogeneous of degree 3 without linear factor and let
E =V, (F). Let L C P? be any line. Then E intersects L in three points when counted
with multiplicities. More precisely, E N L = Spec A for a k-algebra A with dimy(A) = 3.

Here, by line we mean a curve of the form Vi (aX +bY + ¢Z), where (a, b, c) # (0,0,0).

Proof. After a linear change of coordinates, we may assume that L =V, (Z). Since F has
no linear factor, Z { F. Thus F|p = F(X,Y,0) is a non-zero homogeneous polynomial of
degree 3 and hence has three zeroes (counted with multiplicities) as claimed. O

Construction 5.4. Given P,Q € E(k), define a line L C P? as follows:

(1) If P # @, then let L be the unique line that passes through P and Q.
(2) If P = @, then let L be the tangent line to F in that point.

The definition of the tangent uses the smoothness of E. (In a local chart, take the line
perpendicular to the gradient of the equation defining F.) The smoothness of E also
implies that F' has no linear factor. Hence Lemma 5.3 applies and shows that ' and L
intersect in three points (counting multiplicities). But two of these points are known to
be P and @ which lie in L(k)! And if a cubic polynomial has two rational roots, then the
third root is rational as well. Thus there exists a unique third rational intersection point
R € (ENL)(k). Repeating this construction with O, R instead of P, @, defines a fourth
point S € E(k).

Definition 5.5. The sum of P,Q € E(k) is defined as P+ Q := S.

It is true, but not obvious, that this defines a group structure on E(k). The easy part is
to show that O is a neutral element and that every element has an inverse (exercise). It is
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FicUrE 3. The case P # (@ is shown on the left, the tangent construction
when P = @ on the right. The point O here is the point [0 : 1 : 0] at
infinity. The vertical dotted lines are the lines through O and R. The
picture is taken from [15, §III].

moreover clear that the operation (P, Q) — P + @ is commutative. Showing associativity
is more tricky, however.

So far, we have defined a commutative group E(k). If K/k is a field extension, then
we can apply the above construction to K ®; E C IP)%( and obtain a group structure on
E(K) = (K ®; E)(K). We know from algebraic geometry that, given reduced varieties
(smooth, for example) X and Y over an algebraically closed field K, a morphism f: X —
Y is uniquely determined by the map f(K): X(K) — Y (K) on K-points. So there is at
most one morphism F Xg,ecx) £ — E that induces the above group structures on all the
E(K), K/k. Moreover, if it exists, it will satisfy all group axioms because the sets E(K)
do (apply the uniqueness to the diagrams (4.3) and (4.4)).

To complete the proof, one carries out Construction 5.4 in indeterminates and sees that
it indeed comes from a morphism of varieties. We refer the curious reader to [15, Theorem
3.6]. O

The simplified Weierstrass equations from Lemma 5.1 give simple examples of smooth
cubic curves. We will later see that if char(k) # 2,3, then every elliptic curve can be
described by (V4 (F),[0:1:0]) for a simplified Weierstrass equation F. In particular, the
isomorphism classes of elliptic curves over k can be parametrized by the two coefficients
a,b € k? of h(x) = 2® + ax + b. (Only those a and b such that h is separable occur, of
course.)

5.2. Elliptic curves have genus 1. Our next goal is to show that all elliptic curves
come from plane cubic curves. For this, we first need to find a way to extract geometric
properties of E from the existence of the group structure. This is done using differential
forms. Let us begin by recalling their definition.

Definition 5.6. Let R be a ring, A an R-algebra, and M an A-module. An R-derivation
from A to M is an R-linear map § : A — M such that the Leibniz rule holds: For all
a,be A,

0(ab) = ad(b) + bd(a).

Lemma 5.7. There exists a universal R-derivation. That is, there exists an A-module
QL/R together with an R-derivationd : A — 9,14/1% such that every R-derivationd : A — M
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factors through a unique A-module homomorphism ¢ : Q}MR — M. As diagram,

d
A QL (5.5)
v ia! v
M.

The pair (9}4 IR d) is called the module of Kéhler differentials of A over R. It is easy
to describe in terms of generators and relations. Let

A:R[Xl,...,Xn]/(fl,--'afm)

be a presentation of A as a quotient of a polynomial ring over R. Consider the free module
;| AdX; generated by symbols dXi,...,dX,. (This is really A™; the symbols dX; are
just the traditional notation for the standard basis here.) For each f € R[X1,..., X,], we
can take the gradient vector

of

of

- dX,. (5.6)

Then

~

(AdX1 @ ... ® AdX,,) /(dfr, - dfm) — Qg
dX; — d(X;).
The key ideas for proving Lemma 5.7 and (5.7) are as follows:

(5.7)

e Sinced: A— Q}LX/R is supposed to be universal, the module Q}L‘/R has to be generated
by all derivatives d(a) as A-module.
e Since every element of A is a polynomial in the X; with R-coefficients, the Leibniz rule

allows to write every d(a) as an A-linear combination of the d(X;). Hence, the d(X;)
already generate 9}4 /R A5 A-module.

e Since the f; € A are zero, also the d(f;) in QL/R have to be zero. By the Leibniz rule,

d(f;) = (0f/0X1) - d(X1) + ... (0f/0Xn) - d(Xn),
which explains the relations dfy, ..., dfy, in (5.7).
Given an element g € A, there is an isomorphism of A[g~!]-modules

Qa/rlg™ = Lagg-1)/r (5.8)

which is uniquely characterized by sending d(a) to d(a). In other words, the formation
of 9}4 /R is compatible with localizations. This means that the construction can be glued
from rings to schemes.

Definition 5.8. Let 7 : X — S be a morphism of schemes. The quasi-coherent module
with derivation d : Ox — Qﬁ(/s is defined as the unique datum (up to isomorphism)
that is, locally on affine charts Spec(R) C S and Spec(A) C 7 !(Spec(R)), given by

d: A— QL/R glued along (5.8).

Kaihle differentials are closely related to smoothness, and we next state one form of this
relation.

Theorem 5.9 (|9, Theorem 4.18]). Let w: X — S be a morphism that is locally of finite
presentation with purely d-dimensional fibers. Then w is smooth if and only if Qﬁ(/s s
locally free of rank d as Ox-module.
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Definition 5.10 (Genus of a curve). (1) By curve over a field k, we mean a proper,
smooth, geometrically connected and 1-dimensional k-scheme.

(2) Let C — Spec(k) be a curve. By Theorem 5.9, Qlc/k is a line bundle on C. Being

a coherent sheaf on a proper variety, the space of global sections Qlc /k(C) is a finite-
dimensional k-vector space. Its dimension is called the genus of C.

Here, recall that a finite type k-scheme X is said to be geometrically reduced, connected,
integral, etc. if the base change k ®;, X is reduced, connected, integral, etc. An equivalent
condition is that for all field extensions K /k, the base change K ®j X has the relevant
property.

For example, elliptic curves are geometrically connected because they are connected
over k (by definition) and have a rational point (the neutral element).

Theorem 5.11. Let E be an elliptic curve over a field k. Then E has genus 1.

Sketch of proof. The key point is that the sheaf of differential forms of a group scheme is
generated by invariant forms. The proof of this (see |9, Proposition 5.7|) does not concern
us here, we will only state and use the result.

Let m: G — S be a group scheme with neutral element section e : S — G. Recall that
quasi-coherent modules can be pulled back under scheme morphisms. So we may first
form e*(Qé /S), a quasi-coherent S-module. Then we may again pull back along 7. The
statement is that there exists an isomorphism

We now apply (5.9) to our elliptic curve £ — Spec(k). The pullback V = e*(Q}E/k) is

a one-dimensional k-vector space because Q}E Jk is a line bundle. Then (5.9) states that
v: 0@V — QlE/k:‘

Choosing a basis vector w € V, we have thus obtained an isomorphism O = Q}E/k. The
genus of E is hence dimy Op(FE).

Lemma 5.12. Let X — Spec(k) be a proper k-scheme that is geometrically reduced and
geometrically connected. Then dimy Ox (X) = 1.

Proof. The global sections A = Ox(X) are a finite-dimensional k-algebra. Its formation
commutes with base change in the sense that for every field extension K/k, we have

K®,A= OK®kX(K Rk X)

Hence, if X is geometrically reduced and connected, then k @ A is reduced and has a
unique maximal ideal. The residue field is necessarily k because k is algebraically closed.
So k = k ®; A. Thus A was one-dimensional to begin with, meaning k = A. O

Coming back to our elliptic curve E — Spec(k), we see that Og(E) = k, meaning that
F has genus 1 as claimed. U

Remark 5.13. The isomorphism in (5.9) is given by extending the value of a differential
form on e(.S) in the unique way to a left-translation invariant differential form on G. This
concept is also commonly used in differential geometry, where one often identifies the Lie
algebra g of a Lie group G with the space of translation invariant vector fields on G.

For example, the form dt on R is translation invariant with respect to addition because
d(t+ \) = dt for all A € R. The form ¢~ 1dt on R* is translation invariant with respect to
multiplication because (tA)~'d(\t) = t~dt for all A € RX.
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5.3. Genus 1 curves as cubics. We have just shown that every elliptic curve has genus
1. In order to complete the circle of equivalent definitions (a triangle, actually), it is left
to realize curves of genus 1 as cubic curves in P2, Let us first briefly recall a bit of general
formalism.

Construction 5.14. Let X be a k-scheme. Giving a morphism f : X — P} is the same
as giving a line bundle £ on X and a surjection of Ox-modules

008

Namely, on P?, we have the standard line bundle O(1). It is generated by the n+1 global
sections Xo, ..., X, corresponding to the n + 1 coordinates on P;. That is, we have a
surjection

Op" ™ — 0(1), e — Xi.
Given f : X — P}, we can pull back that surjection and obtain a pair £ = f*O(1),
l: (’)??("H) — L as desired.
Conversely, assume that (£, /) is given. Let s; = l(e;) € L(X) be the n + 1 global

sections defined by £. Let U; = D(s;) C X be the open subscheme where s; is a generator.
That is, if we locally trivialize £, say

OU'S;)'C|U7 Si:fisa f’LEOU(U))

then U; N U = D(f;) is the locus where f; is invertible.
Over the open subset U;, every section of £ is a unique multiple of s;. So we have defined
functions s;/s; € Ox(U;) by the identity s; = (sj/s;) - s;. This defines a morphism
S0 55 s
fz': (7""’71"_.’771) U — A™.
S; S; S;
On overlaps U; N Uj, we have the (obvious) relation
Sk _ 55 Pk
S; N S; Sj '
If we spell out how P} is glued from n+1 copies of A}’ by the exact same rule of coordinate
transformation, then this implies that the f; glue to a morphism
f: X —Py.

A good notation for this morphism is [sp : s1 : ... : s,]. Namely, if z € X is a point then
we may view [so(x) : ... : sp(z)] € P*(k(x)) as follows. Let s € £, be a generator as
Ox z-module. Then we may write s; , = h;s for unique functions h; € Ox,. The tuple
[ho(x) : ... hp(x)] is a point of P™(k(x)). Any other generator of £, differs from s by a
unit, hence the tuple (ho(x),...,h,(x)) is unique up to x(x)*, meaning that

[so(x) ... sp(x)] :=[ho(x) : ... : hy(x)]
is well-defined.

Exercise 5.15. Verify that the above two constructions (£,¢) «— (f : X — P}) are
inverse to each other.

Example 5.16. We know that every line bundle on ]P’,lf is isomorphic to one of the line
bundles O(d). The integer d € Z is its degree. We know that

d+1 ifd>0

If d > 0, then a basis for the global sections O(d)(P},) is given by the monomials
X¢, X§1Xxy, .., XoXx& Xt
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where Xo, X1 € O(1)(P}) are the coordinates on Pi. If d > 0, then these monomials also
generate O(d) as line bundle. That is, the map

d+1 —i yri
(’)%(Jr)—»(’)(d), ei — XX

is a surjection of quasi-coherent Opi -modules. The corresponding morphism ]P’,l€ — Pg is
called the Veronese map. It is a closed immersion when d > 1.

Construction 5.14 shows that, if we want to define a morphism E — IP’% from an elliptic
curve to the projective plane, then we need to understand line bundles and their global
sections on F. Let us begin with some general observations and definitions.

e Let X be a noetherian scheme and F a coherent Ox-module. (This is the same as
F being quasi-coherent and of finite type.) Then F is locally free (meaning a vector
bundle) if and only if for every x € X, the stalk F; is a free Ox y-module.

e Thus, if C' is a curve over a field k, then a coherent module £ is a line bundle if and
only if for every x € X, the stalk £, is free of rank 1 over Oc .

e By definition, all our curves are smooth, hence normal. So for x € C closed, the local
ring Oc, is a discrete valuation ring (DVR). By the classification of modules over
principal ideal domains (PIDs), a finite type Oc y-module is free if and only if it is
torsion-free.

Conclusion 5.17. Let 0 # Z C O¢ be an ideal sheaf in Og. Then 7 is stalk-by-stalk
torsion-free because it is a subsheaf of torsion-free sheaf O¢, and hence 7 is a line bundle.

Definition 5.18 (Degree of a line bundle). (1) Let Z C O¢ be a non-zero ideal sheaf.
Then Z = V(Z) C C is a proper closed subscheme. It has to be 0-dimensional, and hence
is a finite k-scheme. As such, it is affine, meaning Z = Spec(A) for a finite dimension
k-algebra A. The degree of 7 is defined as — dimy(A). More concretely, because each local
ring O¢; is a DVR, we can write

-
Z = |_| Spec(Oc,z; /my)
i=1
for uniquely determined pairwise different closed points x1,...,2z, € C and exponents
€ly...,e > 1. Then

deg(Z) = = Y i« [k(xi) : K].
i=1
(2) Let £ be a line bundle on C. There always exist two ideal sheaves Z;,7Zy C O¢ such
that £~ 7; ® Z,'. We define
deg(L) := deg(Z1) — deg(Zz).

This does not depend on the choices of Z1 and Z,. In particular, the degree defines a group
homomorphism
deg : Pic(C) — Z.

Motivation 5.19. The degree is a simple numerical invariant of a line bundle on a curve.
The following results show that it is extremely helpful when studying global sections of
line bundles and hence, by Construction 5.14, maps C' — P.

Theorem 5.20 (Riemann—Roch). Let C' be a curve of genus g over a field k. Then, for
every line bundle L on C,

dim £(C) = deg(£L) + 1 — g + dim (2, ® L~)(C). (5.10)
Corollary 5.21. The degree of Q}}/k 15 29 — 2.
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Proof. Apply the Riemann—Roch Theorem 5.20 to Q}j Ik We obtain
g= deg(Qlc/k) +1—-g+1

which we may rearrange as claimed. (]

Corollary 5.22. Let C/k be a curve of genus 1 and let L be a line bundle of degree
deg(L) > 1 on C. Then
dim £(C) = deg(L).

Proof. By Corollary 5.21, deg(2L,,,) = 0. Since deg(£) > 1, we then have

C/k
deg(Qpy, © L71) = 0 — deg(£L) < 0.

Line bundles of negative degree cannot have non-zero global sections, so (Qlc / k®£71)(0) =

0. Evaluating the Riemann—Roch identity (5.10), we find dim £(C') = deg(L) as claimed.
(]

Theorem 5.23. Let E be a curve over k such that E(k) # 0. Then there exists a
closed immersion E — IP% which identifies E with the curve Vi (F) defined by a cubic
homogeneous polynomial.

Proof. Step 1: Construction of a morphism E — P%. We have seen in Construction 5.14
that, in order to define a morphism £ — IP’%, our task is to find a line bundle £ on F
together with a surjection ¢ : O3 — L.

We now draw inspiration from the example of ]P’/,l€ above. By assumption, there exists
a k-rational point e € E(k). View {e} as a reduced closed subscheme of E, and let Z,
be its ideal sheaf. According to Definition 5.18, its degree is —1. So the dual line bundle
M =T has degree 1.

The degree of M®? is d.° By Corollary 5.22, this means

dim M®YE)=d, d>1.

We are mostly interested in £ = M®3. For every closed point y € E we have an ideal sheaf
7, as before. Its degree is —[k(y) : k], the negative of the residue field extension degree.
On the one hand, we may consider £ and Z, as abstract line bundles. By Riemann-Roch,
the dimension of global sections strictly decreases when tensoring with Z, because the
degree goes down:
dim(£L ® Z,)(F) < 3.
On the other hand, we can consider the concrete exact sequence
0—7, — Op — iwk(y) — 0

where i : {y} — E is the inclusion map. Tensoring by £, which is an exact operation
because L is locally free, we get an exact sequence

0 —L®I, — L—i.L(y) — 0.

Here, L(y) := i*L is our notation for the 1-dimensional k(y) vector space that forms the
fiber of £ in y. Taking global sections, we see that

(L®TL,)(E) C LIE)

are precisely those global sections that vanish in y.

We conclude that for every closed point y € F, there exists a global section s € L(FE)
that does not vanish in y. This means that £ is generated by its global sections. That is,
after choosing a basis sg, s1, s for the three-dimensional vector space L(E), we obtain a
surjection

000 — L, e — s,

6All tensor products during the proof are taken over Og.
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and hence a morphism f: £ — IP’% as in Construction 5.14.

Step 2: f is a closed immersion. We can prove that f is a closed immersion after base
change to k. So from now on, we assume that k is algebraically closed. This helps, because
now every closed point y € E is k-rational and, in particular, deg(Z,) = —1. Let y,y/ € E
be two (possibly equal) closed points. Corollary 5.22 implies that

dim (£ ® T,)(E) = 2
dim (£ ® Z, ® Z,)(E) = 1.

So, after applying a linear change of coordinates on Pi, we may assume that our basis
S0, 81, 82 € L(F) is chosen with

so € L(E)\ (£ ®L,)(E),
51€ (LRL)E)\(L®L, @Ly)(E).
If y # o/, then this means that
[s0(y) : s1(y) = s2(y)] # [s0(y) = s1(y') + s2(y)]

because s1 vanishes in y while it does not vanish in 3. We conclude that f is injective
at the level of topological spaces. Since f is also closed by the properness of F, it is
topologically a closed immersion.

Finally, if y = ¢/, then the above choice of s; ensures that it vanishes to first order in
y, but not to second order. Translating this to local coordinates (omitted), it is possible
to deduce that [sg : s1 : s2] is injective on the tangent space (my/mf/)v in y, which means
that f is even schematically a closed immersion near y.

Step 3: Its image is defined by a cubic equation. We do not assume anymore that k is
algebraically closed. Recall that e € E(k) is our given rational point and that M = Z- 1.
Dualizing the descending chain

(5.11)

..CI}CI?CTI, C O,
we obtain an ascending chain
OpCMcM cMic...
Proceeding with the same logic as in (5.11), we choose elements
1€ Og(E)
M(E) = Og(E) by Cor. 5.22
€ M®*(E)\M(E)
y € MP(E)\M*(E).

View 1,z,y as elements of £L(E) = M®3(E). Then they form a basis because y generates £
near e, while x vanishes to first order and 1 to third order in e. We consider the morphism

(5.12)

[z:y:1]: E — P
Consider the sections
1,z,y, 22 zy, % 23 € M®(E). (5.13)
These are seven sections of a six-dimensional vector space (use again Corollary 5.22), and
hence there exists a non-trivial linear relation

aoy? + box® + arzy + asx® + asy + asx + ag = 0. (5.14)

Claim: Both ag and by are non-zero. The section z is a generator of M®? near e; the
section y a generator of M®3 near e. Hence, y? and 3 are both generators of M®% near
e. Thus either of the set of vectors

Lz,y,2% 2y,y%, or 1,z,y,2% 2y,2° (5.15)
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has the property that the six sections vanish to orders precisely 6,4, 3,2,1,0 in the stalk
(M®0),. Thus, either of the two sets forms a basis for M®5(E). Tt follows that agbg # 0
as claimed. (]

Conclusion: Identity (5.14) means that the morphism [z : y : 1] factors through the
cubic curve

Vi(agY?Z + b X3 + a1 XY Z + a9 X% Z + a3Y Z% + ay X Z° + a6 Z°3)
and the proof is complete.

Our proof even showed that the cubic equation for F may always be chosen in the form
(5.14) (up to homogenization). We can simplify this expression further:

e Scaling y and = by ag/by, we obtain a relation of the form
y? + (b1 + b3)y = 22 + byz? + ayx + ag.
This kind of cubic equation is called a general Weierstrass equation.

e If char(k) # 2, then we can change y to y+ (bix +b3)/2 to simplify further to a relation

of the form
2

Y© = 23 + 02x2 + cyx + cg.
e If char(k) # 3, then we may further replace = by x + ¢2/3 and arrive at the simplified

form

y? =23+ azx +b. (5.16)

Ultimately, we conclude that every elliptic curve can be defined by a general Weierstrass
equation. Outside of characteristics 2 and 3, we may even restrict to simplified Weierstrass
equations.
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