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1. Introduction

The relative trace formula comparison of Jacquet�Rallis [12], which lead to a proof of
the unitary Gan�Gross�Prasad Conjecture [5, 4], relies on a comparison of orbital integrals
between a GLn-setting and a unitary setting. The main local problems in this context are
the existence of smooth transfer and the fundamental lemma.

Over non-archimedean �elds, the existence of transfer was proved by Wei Zhang [25]. The
fundamental lemma has three independent proofs: one via equal characteristic methods by
Zhiwei Yun and Gordon [11, 23], one via global theta series by Wei Zhang [26], and a local
one based on Fourier transforms by Beuzart�Plessis [3].

Over R, it was proved by Hang Xue [22] that a dense subspace of Schwartz functions is
transferable which was su�cient for the global applications in [5, 4]. It is conjectured that
transfer exists for all Schwartz functions.

1.1. Gaussian test functions. In arithmetic situations, one is often interested in speci�c
test functions at the archimedean place. For example, when studying the cohomology of
Shimura varieties, one considers so-called Lefschetz functions, cf. [15, �3]. Their orbital
integrals are non-zero only for elliptic group elements which means they can be understood
as coming by transfer from the compact inner form of the group in question.

In the trace formula setting of Jacquet�Rallis, the analogous kind of functions are those
coming by transfer from the compact unitary group U(n+ 1). For example, a transfer of the
identity function is used in Wei Zhang's relative trace formula approach to the Arithmetic
Gan�Gross�Prasad Conjecture [24]. Such transfers were named Gaussian test functions in
[21], and these are the test functions from the title of the paper.

The purpose of our paper is to give a simple, direct, and local construction of Gaussian test
functions. Their existence was already known before from [5, Proposition 4.11]. Our explicit
construction has the advantage that it also allows to study derivatives of orbital integrals.
This matters, for example, during the proof of the arithmetic fundamental lemma [26, �12],
[17, �10]; and also plays a role in ongoing work of the authors on arithmetic generating series.
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1.2. Main result. We now give a precise description of our main result and also introduce
concepts that will be used throughout the paper. Consider the real manifold

Sn+1 := {γ ∈ GLn+1(C) | γγ = 1}. (1.1)

The group GLn(R) acts on it by conjugation via g 7→ diag(g, 1). We denote by [Sn+1]rs the
set of regular semi-simple orbits.

In a similar way, for every hermitian C-vector space V , the group U(V ) acts by conjugation
on U(V ⊕ C). Here, C is viewed with the standard hermitian form of signature (1, 0). We
again denote by [U(V ⊕ C)]rs the set of regular semi-simple orbits. The orbit matching of
Jacquet and Rallis [12] de�nes a bijection

[Sn+1]rs
∼−→

∐
r+s=n

[U(V(r,s) ⊕ C)]rs, (1.2)

where V(r,s) is a choice of hermitian C-vector space of signature (r, s). Suppose ϕ ∈ S(Sn+1)
is a Schwartz function and γ ∈ Sn+1 regular semi-simple. Jacquet and Rallis introduced the
orbital integral

Orb(γ, ϕ) = ϵ(γ)

∫
GLn(R)

ϕ(g−1γg)η(g) dg (1.3)

where η is the sign character η(g) = sign(det(g)), where dg is a �xed choice of Haar measure,
and where ϵ(γ) ∈ C× is the transfer factor de�ned in �5.1.

De�nition 1.1. (1) A regular semi-simple element γ ∈ Sn+1 is said to match to signature
(r, s) if its matching orbit under (1.2) lies in the signature (r, s) component.

(2) A Schwartz function ϕ ∈ S(Sn+1) is said to be a Gaussian test function if its orbital
integrals are given by

Orb(γ, ϕ) =

{
1 γ matches to signature (n, 0)

0 otherwise.
(1.4)

Our main result is the following theorem.

Theorem 1.2. Gaussian test functions in the sense of De�nition 1.1 exist. Moreover, they
can be explicitly constructed in terms of Kudla�Millson theory.

In fact, since the groups U(n) and U(n+1) are compact and connected, the matrix coe�-
cients of their irreducible representations are algebraic functions. Theorem 1.2 then immedi-
ately extends to a description of transfer for such matrix coe�cients (see Corollary 5.5).

We will deduce Theorem 1.2 from an analogous statement for Lie algebras, and the bulk
of our paper is about this Lie algebra variant.

1.3. Strategy of proof. Consider the tangent space at the identity of Sn+1:

sn+1 = {y ∈Mn+1(C) | y + y = 0}.

Also de�ne u(V ) = Lie(U(V )). Then GLn(R) acts by conjugation on sn+1, and U(V ) acts
by conjugation on u(V ⊕C) as before. By the in�nitesimal trace formula comparison [12, 8],
there is again a bijective matching of regular semi-simple orbits

[sn+1]rs
∼−→

∐
r+s=n

[u(V(r,s) ⊕ C)]rs. (1.5)
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The precise de�nition will be recalled in �2.1. We again say that y ∈ sn+1,rs matches to
signature (r, s) if its matching orbit under (1.5) lies in the (r, s)-component. For y ∈ sn+1,rs

and Φ ∈ S(sn+1), there is again an orbital integral (De�nition 2.5)

Orb(y,Φ) = ε(y)

∫
GLn(R)

Φ(g−1yg)η(g) dg. (1.6)

Both sn+1 and each u(V(r,s) ⊕ C) are quadratic spaces with quadratic form Q(z) = −tr(z2),
and these forms are constant along orbits. If two elements y ∈ sn+1,rs and x ∈ u(V(r,s) ⊕ C)rs
match under (1.5), then Q(x) = Q(y). The quadratic form on u(V(n,0)⊕C) is positive de�nite,
so we can consider the Gaussian Ψ ∈ S(u(V(n,0) ⊕ C)) de�ned by

Ψ(x) = e−2πQ(x).

The following de�nition is the in�nitesimal analogue of De�nition 1.1.

De�nition 1.3. A Gaussian test function on sn+1 is a Schwartz function Φ ∈ S(sn+1) that
is a smooth transfer of Ψ. That is, for all regular semi-simple y ∈ sn+1,

Orb(y,Φ) =

{
e−2πQ(y) y matches to signature (n, 0)

0 otherwise.

Having passed to this Lie algebra setting, our main idea is to apply Kudla�Millson theory
[13, 16], in particular their construction of certain di�erential forms on symmetric spaces
attached to orthogonal groups. Let X = GLn(R)/O(n) denote the symmetric space attached
to GLn, and let D be the symmetric space attached to SO(sn+1). The action of GLn(R) on
sn+1 is an orthogonal representation,

ρ : GLn(R) −→ SO(sn+1).

It descends to a closed immersion

α : X −→ D

at the level of symmetric spaces, cf. Section 3.1. Identifying Te(X) = Symn(R), the
pullback α∗(φKM) of the Kudla�Millson form φKM lies in S(sn+1) ⊗ det(Symn(R)). Let
ω ∈ det(Symn(R)) be the properly oriented generator that de�nes the chosen Haar measure
on GLn(R) under the Iwasawa decomposition, see Section 4.4 for details.

Theorem 1.4. Let Φ ∈ S(sn+1) be the Schwartz function characterized by the identity

α∗(φKM) = Φ⊗ ω. (1.7)

Then, up to a constant multiple, Φ is a Gaussian test function in the sense of De�nition 1.3.

The reader is referred to Theorem 4.15 for explicit normalizations.
For the proof of Theorem 1.4, we analyse the intersection behaviour of α(X) with the

Kudla�Millson cycles Dy, y ∈ sn+1,rs. On the one hand, taking into account orientations, this
intersection number is ε(y) or 0, depending on whether y matches to signature (n, 0) or not
(Proposition 3.2).

On the other hand, the Kudla�Millson form is, in a certain sense, dual to the cycles Dy.
Once the corresponding convergence statement is established, its integrals over X are hence
equal to the above intersection numbers, which ultimately completes the proof.

Two points of this construction seem miraculous to us. The �rst is the numerical coincidence
that underlies the de�nition of Φ via (1.7): the negative part of the signature of sn+1 agrees
with the dimension of the symmetric space X.
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The second is the signs that are hidden in the construction. Namely, the di�erential forms
of Kudla�Millson transform with a certain quadratic character. Specialized to our situation,
we obtain that α∗(φKM) is (O(n), ηn)-invariant. At the same time, the character of O(n)
acting on det(Symn(R)) is ηn−1. Taken together, this implies that Φ is (O(n), η)-invariant
which aligns with the character in Jacquet�Rallis's orbital integrals (1.6).

Finally, we remark that the Kudla�Millson form φKM and, by extension, the function Φ in
(1.7) are completely explicit. We refer to Examples 4.16 and 4.17 for the cases n = 1 and
n = 2.

1.4. Acknowledgements. We heartily thank Michael Rapoport and Wei Zhang for helpful
discussions during the writing of this manuscript and for their continued interest. We further
thank the American Institute of Mathematics, the Max Planck Institute for Mathematics in
Bonn, and the Morningside Center of Mathematics, where parts of this work were done, for
their hospitality.

2. Setting

We give precise de�nitions of orbit matching and of the orbital integral in De�nition 1.3.

2.1. Orbits and matching. A reference for the following statements is [8, �2.1 and �2.2].
Set G = GLn(R). An element y ∈ sn+1 is regular semi-simple if the stabilizer Gy is trivial,
and the orbit G · y ⊂ sn+1 Zariski closed. A concrete characterization of this property is as
follows. Write y in a block matrix form

y =

(
y0 v
w d

)
∈
(

sn i · Rn

i · Rn i · R

)
. (2.1)

Here and in the following, we use Rn and Rn, as well as Cn and Cn, to respectively denote
column and row vectors. Then

y regular semi-simple ⇐⇒ C[y0] · v = Cn and w · C[y0] = Cn. (2.2)

The invariant of y is de�ned as the tuple

Inv(y) :=
(
char(y0;T ), wv, wy0v, . . . , wy

n−1
0 v, d

)
. (2.3)

It can be understood as the R-point of the GIT quotient G \\ sn+1
∼= A2n+1 de�ned by y. It

is known, see [8, Lemma 2.1.5.1], that two regular semi-simple elements y and y′ satisfy

G · y = G · y′ ⇐⇒ Inv(y) = Inv(y′). (2.4)

We turn to the unitary side. Let V be an n-dimensional hermitian C-vector space. An
element x ∈ u(V ⊕ C) is regular semi-simple if its stabilizer U(V )x is trivial and if the orbit
U(V ) · x ⊆ u(V ⊕ C) is Zariski closed. Write x in block matrix form

x =

(
x0 u
−u∗ d

)
∈
(
u(V ) V
V ∗ i · R

)
(2.5)

where we identi�ed Hom(C, V )
∼→ V in the obvious way. Similarly to before, x is regular

semi-simple if and only if C[x0] · u = V . The invariant of x is de�ned as

Inv(x) :=
(
char(x0;T ), −(u, u), −(u, x0u), . . . , −(u, xn−1

0 u), d
)
. (2.6)

As before, two regular semi-simple elements x and x′ lie in the same U(V )-orbit if and only
if Inv(x) = Inv(x′).
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De�nition 2.1. We denote by sn+1,rs and u(V ⊕ C)rs the subsets of regular semi-simple
elements. Two elements y ∈ sn+1,rs and x ∈ u(V ⊕ C)rs are said to match if Inv(y) = Inv(x).

Recall that V(r,s) is our notation for a hermitian C-vector space of signature (r, s). For con-
creteness, we choose V(r,s) = Cn with standard hermitian form diag(1r,−1s) in the following.
We have already stated in (1.5) that matching de�nes a bijection between regular semi-simple
orbits on the general linear and unitary side, see [8, Propositions 2.1.5.2 and 2.2.4.1].

Lemma 2.2. A regular semi-simple element y ∈ sn+1 matches to signature (n, 0) if and only
if y has an orbit representative of the form

i ·


λ1 µ1

. . .
...

λn µn
µ1 · · · µn d

 . (2.7)

We remark that an element of the form (2.7) is regular semi-simple if and only if the λj
are pairwise di�erent and the µj all non-zero. This is clear from (2.2).

Proof. Assume that y ∈ sn+1 and x ∈ u(V(n,0)⊕C) are regular semi-simple and matching. We
use the notation of (2.1) and (2.5). Since x0 lies in u(V(n,0)), since V(n,0) is de�nite, and since
x is regular semi-simple, the characteristic polynomial of x0 is separable with eigenvalues in
i · R. By the de�nition of matching, char(y0;T ) = char(x0;T ). Thus y0 is G-diagonalizable
which means that y is G-conjugate to an element of the form

y′ = i ·


λ1 µ1

. . .
...

λn µn
µ′1 · · · µ′n d

 . (2.8)

None of the µk and µ′k vanishes by (2.2). The C-algebras C[y′0] and C[x0] are isomorphic via
y′0 7→ x0. For k = 1, . . . , n, let πk(y

′
0) ∈ C[y′0] denote the idempotent for the λk-eigenspace.

Then
iµ′k · iµk = (iµ′1, . . . , iµ

′
n) · πk(y′0) · t(iµ1, . . . , iµn)

= −(u, πk(x0)u) < 0,

where the second equality comes from the de�nition of matching, and where the inequality
comes from the de�niteness of V(n,0). So

µk · µ′k = (u, πk(x0)u) > 0.

Conjugating (2.8) by the diagonal matrix diag(|µ′1/µ1|1/2, . . . , |µ′n/µn|1/2) brings it into the
form of (2.7).

Conversely, assume that y has the form (2.7). Set x = y and view it as an element of
Mn+1(C). Since x satis�es tx = −x, it lies in the Lie algebra u(V(n,0) ⊕C). The de�nition of
Inv(x) does not depend on whether we view it as element of sn+1 or of u(V(n,0) ⊕C). So this
shows that y matches to signature (n, 0) as claimed. □

Lemma 2.3. Consider the open subset

S = {y ∈ sn+1,rs | y matches to signature (n, 0)}. (2.9)

Then S has two connected components which are interchanged by any g ∈ G with det(g) < 0.
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Proof. By Lemma 2.2, every element of S has a representative of the form (2.7). Acting
with permutation matrices from G, and with diagonal matrices of the form diag(ε1, . . . , εn),
εk ∈ {±1}, we may even �nd such a representative with λ1 > . . . > λn and all µk > 0. Thus,
if we let R ⊆ sn+1 denote the set of all matrices of the form (2.7) that satisfy these conditions,
then

R ⊂ S and S = G ·R.
The manifold R is connected, the group G has two connected components, and regular semi-
simple elements have trivial stabilizer. It follows that S has two connected components which
are interchanged by elements with negative determinant as claimed. □

2.2. Orbital integrals. Recall that η : G → {±1} denotes the sign character. The transfer
factors used in [12, 5] are adapted to a global trace formula setting which we do not need
here, so we use the following simple de�nition:

De�nition 2.4. A transfer factor is a locally constant function

ε : sn+1,rs −→ {±1},
that satis�es ε(g−1yg) = η(g)ε(y) for all g ∈ G and y ∈ sn+1,rs.

Note that the orbital integrals of Gaussian test functions are non-zero only for y ∈ S, and
ε|S is unique up to sign by Lemma 2.3. So for the purposes of our article, choosing ε can be
understood as �xing one of the two (G, η)-invariant sign functions on S.

We �x a transfer factor ε for the rest of the article. Recall that we also already �xed a
Haar measure on G in �1.

De�nition 2.5. Let Φ ∈ S(sn+1) be a Schwartz function and y ∈ sn+1 a regular semi-simple
element. The orbital integral Orb(y,Φ) is de�ned by

Orb(y,Φ) := ε(y)

∫
G
Φ(g−1yg)η(g) dg. (2.10)

It only depends on the orbit G · y.

3. Intersection numbers

3.1. Symmetric spaces. Let G0 = GLn(R)det>0 be the identity connected component. Let
K = SO(n) ⊂ G0 be the standard maximal compact subgroup and let X = G0/K be the
corresponding symmetric space.

We denote by Symn and Skewn the real vector spaces of symmetric (resp. skew-symmetric)
(n × n)-matrices. We write Sym>0

n for the positive de�nite symmetric matrices. We can
describe X as

X
∼−→ Sym>0

n , gK 7−→ tg−1 · g−1. (3.1)

Recall that we endowed sn+1 with the quadratic form Q(y) = −tr(y2). There is an orthog-
onal decomposition

sn+1 = (i · Symn+1)
⊥
⊕ (i · Skewn+1)

where the quadratic form is positive de�nite on the �rst, and negative de�nite on the second
summand. Let

KSO = SO(i · Symn+1)× SO(i · Skewn+1)

be the corresponding maximal compact subgroup of the identity connected component SO(sn+1)
0,

and let
D := SO(sn+1)

0 /KSO
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be the quotient symmetric space. A concrete description of D is given by

D
∼−→ {W ⊆ sn+1 | Q|W < 0, dim(W ) = n(n+ 1)/2}

hKSO 7−→ h · (i · Skewn+1).
(3.2)

Recall that ρ : G −→ SO(sn+1) denotes the orthogonal representation that de�nes the action
of G on sn+1, i.e. for g ∈ G and y ∈ sn+1, we set

ρ(g)y =

(
g

1

)
y

(
g−1

1

)
. (3.3)

To simplify notation, we will often write g · y for ρ(g)y. The map ρ descends to a closed
immersion

α : X −→ D (3.4)

of real manifolds, and our next aim is to describe it in terms of (3.1) and (3.2).
Suppose that H ∈Mn(R) is a symmetric (n×n)-matrix with det(H) ̸= 0. Then we denote

by Sym(H) and Skew(H) the real vector spaces of matrices that are (skew-)symmetric with
respect to H. That is,

Sym(H) = {A ∈Mn(R) | tA = HAH−1}

Skew(H) = {A ∈Mn(R) | tA = −HAH−1}.
Observe that for g ∈ GLn(R),

g · Sym(H) · g−1 = Sym(tg−1 ·H · g−1), (3.5)

and analogously for Skew(H). With this terminology in place, α is given by

α : Sym>0
n −→ D

H 7−→ i · Skew
((

H
1

))
.

(3.6)

3.2. Kudla�Millson cycles. For a vector y ∈ sn+1, Kudla�Millson introduced the totally
geodesic submanifold

Dy = {W ∈ D | y ⊥W}.
Clearly, as long as y ̸= 0,

Dy =

{
symmetric space for SO(⟨y⟩⊥) if Q(y) > 0

∅ if Q(y) ≤ 0.

In particular, Dy is of codimension n(n+ 1)/2 if Q(y) > 0.

Proposition 3.1. Let y ∈ sn+1 be regular semi-simple. Then

|X ∩Dy| =

{
1 if y matches to signature (n, 0)

0 otherwise.
(3.7)

Moreover, in the �rst case, the intersection X ∩Dy is transversal.

Proof. Assume that y matches to signature (n, 0). (This in particular implies that Q(y) > 0.)
By the invariance property g ·Dy = Dg·y, we may assume that y is of the diagonal form (2.7).
In particular y ∈ i · Symn, which is equivalent to y ⊥ i · Skewn+1. In terms of (3.6), this
means that H = 1n lies in X ∩Dy, and hence X ∩Dy ̸= ∅.

Conversely, assume that X ∩ Dy is non-empty. This means that there exists a positive
de�nite quadratic form H ∈ Symn such that y ⊥ i · Skew

((
H

1

))
, which is equivalent to y ∈
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i ·Sym
((

H
1

))
. In terms of the block coordinates from (2.1), this implies y0 is diagonalizable

with eigenvalues in i ·R. Put di�erently, the G-orbit G · y contains an element y′ of the form
(2.8):

y′ = i ·


λ1 µ1

. . .
...

λn µn
µ′1 · · · µ′n d

 . (3.8)

Since y′ is regular semi-simple, the eigenvalues λ1, . . . , λn are pairwise di�erent. Moreover,
since X ∩ Dy

∼→ X ∩ Dy′ , there exists a positive de�nite symmetric matrix H ′ such that

y′ ∈ i · Sym
((

H′
1

))
. Since y′0 is diagonal, the only possibility for H ′ is to be diagonal. Since

H ′ is positive de�nite, its entries are strictly positive. In terms of (3.8), this implies that µk
and µ′k have the same sign, for all k = 1, . . . , n. Hence y′ is G-conjugate to an element of the
form (2.7) and hence matches to signature (n, 0) by Lemma 2.2. Moreover, H ′ is uniquely
determined by H ′ = diag(µ′1/µ1, . . . , µ

′
n/µn), which proves the set-theoretic statement (3.7).

It is left to show the transversality of the intersection. Assume that there exists a non-zero
tangent vector to a point e ∈ X ∩Dy,

0 ̸= v ∈ Te(X) ∩ Te(Dy)

where the intersection is taken in the tangent space Te(D). Since both X and Dy are totally
geodesic submanifolds of D, the geodesic through e de�ned by v is contained in both X and
Dy, in contradiction with the fact that |X ∩Dy| = 1. □

3.3. Orientations. We �x an orientation on D, as well as an orientation on the vector space
V − := i · Skewn+1 ⊂ sn+1. As described in [16, �2], these choices induce an orientation on
each submanifold Dy for y ∈ sn+1. Note that if V is a quadratic space of signature (p, q) with
p ≥ 2 and q ≥ 1, then the set of positive length vectors V>0 ⊂ V forms a connected manifold.
Thus there are only two conventions for orienting the family {Dy}y∈sn+1, y ̸=0 such that the
orientations vary continuously in y. The de�nition in [16, �2] can be understood as �xing one
of them.

Given an orientation on X, let [X] denote the resulting oriented manifold. The transver-
sality statement in Proposition 3.1 allows to consider the topological intersection numbers
[X] ·[D] [Dy] ∈ {±1} whenever y is regular semi-simple. Recall that we �xed the transfer
factor ε.

Proposition 3.2. There exists an orientation on X such that for every regular semi-simple
element y ∈ sn+1,

[X] ·[D] [Dy] =

{
ε(y) if y matches to signature (n, 0)

0 otherwise.
(3.9)

Proof. Let z ∈ sn+1,rs match to signature (n, 0). Then X intersects Dz by Proposition 3.1.
Fix the orientation on X such that [X] ·[D] [Dz] = ε(z). We claim that, with this choice, (3.9)
holds for all y ∈ sn+1,rs.

By Proposition 3.1, the intersection number [X] ·[Dy ] [D] is non-zero precisely for y ∈ S, the
subset of y ∈ sn+1,rs that match to signature (n, 0). This set has two connected components
by Lemma 2.3, and these are interchanged by G \G0. By de�nition of the transfer factor, we
have ε(g · y) = η(g)ε(y) for all g ∈ G. Our task is hence to show that we have the identity

[X] ·[D] [Dg·y] = η(g) · [X] ·[D] [Dy]
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for one choice of y ∈ S.
The action of G0 on X and D extends to an action of G by extending the formulas in (3.1)

and (3.2):

G×X −→ X, g ·H = tg−1 ·Hg−1

G×D −→ D, g ·W = gWg−1.

For all g ∈ G, invariance of intersection numbers under isomorphisms implies that

[X] ·[D] [Dy] = (g · [X]) ·(g·[D]) (g · [Dy])

where the terms (g · [M ]) denote the image g(M) together with their pushforward orientation.
We consider the speci�c element σ = diag(−1, 1, . . . , 1) ∈ G which stabilizes the base point

e = 1n ∈ X. It is clear from de�nitions that σ · Dy = Dσy. We need to understand how σ
interacts with the orientations on X, D, Dy and Dσy.

(1) The tangent space Te(X) is Symn and conjugation by σ on Symn has determinant (−1)n−1.
So we obtain

σ · [X] = (−1)n−1[X]. (3.10)

(2) The tangent space Te(D) is Hom(i · Skewn+1, i · Symn+1). Conjugation by σ acts with
determinant

((−1)n)dim(Skewn+1) · ((−1)n)dim(Symn+1) = (−1)n(n+1)(n+1) = 1.

So we �nd
σ · [D] = [D]. (3.11)

(3) Finally, let y ∈ S be such that e ∈ Dy. The orientation on Te(Dy) is de�ned as follows.
Recall that we have �xed a reference orientation on i·Skewn+1. Orient the line ⟨y⟩ by declaring
y to be positive. Consider the induced orientation on Hom(i · Skewn+1, ⟨y⟩). Finally, orient
the space Te(Dy) = Hom(i · Skewn+1, ⟨y⟩⊥) by requiring that the direct sum decomposition

Hom(i · Skewn+1, i · Symn+1) = Te(Dy)⊕Hom(i · Skewn+1, ⟨y⟩) (3.12)

is compatible with orientations. Moreover, σ acts on i · Skewn+1 via a transformation with
determinant (−1)n. Thus, by (2) and (3.12), we conclude

σ · [Dy] = (−1)n[Dσy]. (3.13)

Taking (3.10), (3.11) and (3.13) together, we obtain

[X] ·[D] [Dσy] = −[X] ·[D] [Dy] (3.14)

as we needed to show.
□

4. Schwartz functions

4.1. Mathai�Quillen formalism. We begin by recalling a general formalism of Mathai and
Quillen [18]. Our presentation here follows [2]. Assume that M is an oriented manifold, and
let C∞

M (resp. Ω•
M ) denote the spaces of smooth functions (resp. di�erential forms) over M .

Tensor products in the following are meant as smooth vector bundles over M , meaning over
C∞
M .
Suppose that (E, ( , )) is an oriented metrized vector bundle of rank r over M , and that

∇ : E → Ω1
M ⊗ E is a connection that is compatible with the metric in the sense that

d(s1, s2) = (∇s1, s2) + (s1,∇s2).
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Let κ : E → Ω2
M ⊗ E denote the curvature, which is a section of Ω2

M ⊗ End(E). From the
compatibility of ∇ with the metric it is immediate that

(κ(s1), s2) + (s1, κ(s2)) = 0

for all sections s1, s2 : M → E. This means that κ de�nes a section κ : M → Ω2
M ⊗ so(E).

We identify ∧2E
∼→ so(E) by

s1 ∧ s2 7−→ [v 7→ (s1, v)s2 − (s2, v)s1]

and view κ as a section

κ : M −→ Ω2
M ⊗ (∧2E). (4.1)

Consider the bigraded (non-commutative) algebra A = Ω•
M ⊗ (∧•E) with sign convention

(σ1 ⊗ τ1) · (σ2 ⊗ τ2) = (−1)deg(τ1) deg(σ2)(σ1 ∧ σ2)⊗ (τ1 ∧ τ2).
The last piece of notation we need is the Berezin integral

{−} : A −→ Ω•
M .

It is given by composing the projection A → Ω•
M ⊗ (∧topE) with the (unique) trivialization

(∧topE)
∼→M × R that preserves orientation and metric.

Now suppose that s : M → E is a section. Consider the three elements

|s|2 := (s, s) ∈ C∞
M ,

∇(s) ∈ Ω1
M ⊗ E

κ ∈ Ω2
M ⊗ (∧2E).

(4.2)

all viewed in the algebra A.

De�nition 4.1. Let r = rank(E). The Mathai�Quillen form of s de�ned by the above data
is the r-form

ψs := (−1)r(r−1)/2(2π)−r/2
{
e−2π|s|2−2

√
π∇(s)−κ

}
∈ Ωr

M .

Here the exponential is de�ned by the usual power series, with products taking place in the
algebra A. We remark that the normalizing factors are motivated by Theorem 4.7 below.

We denote by Z(s) or Zs ⊆ M the zero locus of s. Assume in addition that s is a regular
section, meaning that for all points x ∈ Zs, the induced map ds : Tx(M) → Ex from tangent
space to �ber is surjective. Then Zs is a submanifold of M of codimension r.

De�nition 4.2. Let [Zs] denote the submanifold Zs equipped with the following orientation:
for any point x ∈ Zs, the derivative ds de�nes an isomorphism Nx ≃ Ex where N is the
normal bundle of Zs. The �xed orientation on E pulls back to an orientation of N . As we
have also �xed an orientation on M , we de�ne an orientation on Zs via the identi�cation
∧topNx ⊗ ∧topTxZs

∼→ ∧topTx(M).

For a compactly supported di�erential form η ∈ Ω•
c,M , we de�ne the δ-current

δ[Zs](η) :=

∫
[Zs]

η|Zs .

Proposition 4.3. Let M be an oriented manifold, E an oriented metrized vector bundle of
rank r, and ∇ a compatible connection. Suppose that s is a regular section of E with oriented
vanishing locus [Zs].
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Let ψs denote the Mathai�Quillen form, and for a compactly supported di�erential form
η ∈ Ω•

c,M consider the current

[ψs](η) :=

∫
M
ψs ∧ η.

Note that for t ∈ R>0, the section ts is again regular, and induces the same orientation on
Zs = Zts. We then have

lim
t→∞

[ψts] = δ[Z(s)].

as currents on M .

Proof. This proposition follows from the estimates in [6, Theorem 3.12]; see also [10, Theorem
2.1] for a direct proof in local coordinates. □

We will also have need for the following �transgression formula�:

Proposition 4.4. Let M be an oriented manifold and E an oriented metrized vector bun-
dle, equipped with a compatible connection, as above. For any section s of E, we de�ne the
transgression form

ζs := (−1)r(r−1)/2(2π)−r/2
{
s ∧ e−2π|s|2−2

√
π∇(s)−κ

}
∈ Ωr−1(M).

Then for t ∈ R>0, we have

t
∂

∂t
ψts = −2

√
π dζts.

Proof. This is proved in [18, �7]; see also [10, Prop. 1.3]. □

Proposition 4.5. Suppose M is an oriented manifold, E is an oriented vector bundle of rank
r, and s is a regular section of E with vanishing locus [Zs] oriented as per De�nition 4.2.

(1) On M \ Zs, the integral

gs :=

∫ ∞

1
ζts
dt

t
(4.3)

de�nes a smooth form.

(2) The form gs ∈ Ωr−1(M \ Zs) extends to a locally L1-form on M .

(3) Let [gs] denote the current given by integration against gs. Then we have the identity

2
√
π d[gs] + δ[Zs] = [ψs] (4.4)

of currents on M .

Proof. These statements follow from analogous estimates to those found in [6, Theorem 3.12],
which are presented in greater generality (and under slightly di�erent assumptions) in loc.
cit. For the convenience of the reader, we give a self-contained argument here.

Let C = (−1)r(r−1)/2(2π)−r/2. Since |s|2 commutes with both ∇(s) and κ in the algebra
A, we may write

ζs = Ce−2π|s|2{s ∧ e−2
√
π∇(s)−κ} (4.5)

Note that the expression {s ∧ e−2
√
π∇(s)−κ} is a polynomial expression in s,∇(s) and κ. In

particular, we may write

ζs =
r∑

k=1

ηk(s)e
−2π|s|2
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where ηk(s) ∈ Ωr−1(M) is homogeneous in s of degree k, i.e. ηk(ts) = tkηk(s) for t ∈ R. Then,
on M \ Zs, we have

gs =

r∑
k=1

(∫ ∞

1
tke−2πt2|s|2 dt

t

)
ηk(s)

=
r∑
k

|s|−k

(∫ ∞

|s|
tke−2πt2 dt

t

)
ηk(s).

(4.6)

For each k > 0, the integrals appearing above de�ne smooth functions on M \ Zs and the
function |s|−k is also smooth on M \ Zs. Part (1) follows from these observations.

To prove part (2), it su�ces to show that gs is locally L1 in a neighbourhood of Zs. If
Zs is empty, there is nothing to show. Otherwise, �x a point z ∈ Zs and a coordinate chart
U ⊂ M around z with coordinates x1, . . . xn mapping z to 0 ∈ Rn. We may further assume
that there is a local orthonormal frame e1, . . . , er of E|U such that

s =

r∑
1

xiei.

In particular, we have |s|2 = x21 + · · ·+ x2r . Substituting the above expression for s into (4.5),
we conclude that upon restriction to U , each ηk(s) can be written as a linear combination of
the form

ηk(s)|U =

r∑
i=1

xi · (smooth form on U) .

Moreover, all the integrals appearing in (4.6) are evidently bounded. We are reduced to
showing that the functions

xi
|s|k

=
xi

(x21 + · · ·+ x2r)
k/2

, i, k ≤ r

are integrable on a su�ciently small open neighbourhood of 0 ∈ Rn; this latter fact is a
straightforward calculus exercise via polar coordinates.

Finally, we prove part (3). Suppose η is a compactly supported form on M . Then

d[gs](η) =

∫
M
gs ∧ dη =

∫
M

(
lim
t→∞

∫ t

1
ζrs

dr

r

)
∧ dη

= lim
t→∞

∫
M

(∫ t

1
ζrs

dr

r

)
∧ dη

= lim
t→∞

∫
M
d

(∫ t

1
ζrs

dr

r

)
∧ η

(4.7)

where the interchange of limit and integral in the second equality is justi�ed by the proof of
part (2) and the dominated convergence theorem. Applying Proposition 4.4, we have

d

(∫ t

1
ζrs

dr

r

)
=

∫ t

1
dζrs

dr

r

= − 1

2
√
π

∫ t

1

∂

∂r
ψrsdr

= − 1

2
√
π
(ψts − ψs) .
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Substituting this into (4.7) and applying Proposition 4.3 yields the result.
□

4.2. The Kudla�Millson form and a result of Brancherau. We begin with a slightly
more general situation. Let (V,Q) be a real quadratic space of signature (p, q). Let V = V +⊕
V − be a decomposition into maximal positive and negative, de�nite subspaces respectively.
Let D(V ) = SO(V )0/SO(V +)× SO(V −) be the corresponding symmetric space. As before,
there is an identi�cation

D(V ) ≃ {z ⊂ V | Q|z < 0 and dim z = q} .

The space D(V ) is naturally equipped with a tautological vector bundle Ẽ of rank q;

concretely, the �bre Ẽz at a point z ∈ D is simply the space z. We de�ne a metric (·, ·)
Ẽ
on

Ẽ by the formula

(s̃, s̃)
Ẽ
(z) = −2Q(s̃(z)), s̃ : D(V ) → Ẽ.

It is clear that the datum (Ẽ, (·, ·)
Ẽ
) is naturally SO(V )0-equivariant. Given any v ∈ V , there

is a section

s̃v : D(V ) −→ Ẽ, s̃v(z) = prz(v)

i.e. for z ∈ D(V ), we take the orthogonal projection prz(v) of v onto z. By construction, this
section satis�es

γ∗s̃v = s̃γ−1v (4.8)

for any γ ∈ SO(V )0. Moreover, we have

Z(s̃v) = Dv

where

Dv := {z ∈ D(V ) | z ⊥ v}
is the Kudla�Millson cycle from Section �3.2.

Furthermore, �x an orientation on D(V ) and Ẽ. We note that as D(V ) is connected, an

orientation on Ẽ is determined by the choice of an orientation on any single �bre Ẽz. Such
a choice determines an orientation of Dy, as in [16, �2]. On the other hand, if Q(v) > 0,
then it is straightforward to check that s̃v is regular, which in turn induces an orientation on
[Z(s̃y)] via De�nition 4.2. Unwinding the de�nitions, one can verify that the two constructions
coincide, i.e.

[Z(s̃y)] = [Dy]. (4.9)

Finally, the bundle Ẽ is equipped with a natural connection ∇
Ẽ
called the Maurer-Cartan

connection; see e.g. [7, �3.1] for details. This connection is compatible with the metric on Ẽ,
and is SO(V )0-equivariant.

Having speci�ed the requisite data, we now have the corresponding Mathai�Quillen form

ψs̃v ∈ Ωq(D(V )) (4.10)

as in De�nition 4.1.
On the other hand, Kudla and Millson have constructed an explicit di�erential form, sat-

isfying a natural Thom form property with respect to Dy. We brie�y recall the construction,
referring to [7, �2] for a more detailed discussion. We begin by noting that there is a canonical
identi�cation

P := Te(D(V )) ≃ Hom(V −, V +).
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Note also that the linear action of O(V ) on V induces an action on D(V ), and the maximal

compact subgroup K̃ := O(V +) × O(V −) acts on P by post- and pre-composition in the
natural way.

Fix orthonormal bases x1, . . . , xp for V + and xp+1, . . . , xp+q for V
−. These induce a basis

{Xij} for P, with 1 ≤ i ≤ p and p + 1 ≤ j ≤ p + q. Concretely, Xij(xk) = δjkxi. Let ωij

denote the dual basis, and de�ne the Howe operator

H : S(V )⊗C ∧•P∗ −→ S(V )⊗C ∧•+qP∗

by the formula

H := 2−q ·
p+q∏

j=p+1

p∑
i=1

[(
(xi −

1

2π

∂

∂xi

)
⊗Aij

]
where S(V ) is the space of Schwartz functions on V , and Aij is left multiplication by ωij .

De�nition 4.6 ([16, �5]). The Kudla�Millson form φKM is the q-form obtained by applying
the Howe operator to the Gaussian:

φKM := H · e−π(
∑p+q

i=1 x2
i ) ∈ S(V )⊗ (∧qP∗).

This form satis�es the following equivariance property. Let ν : O(V ) → {±1} denote the

spinor norm. Recall that this is the unique character whose restriction to K̃ = O(V +)×O(V −)
is given by ν(k+, k−) = det(k−). We then have

φKM(k−1v) = ν(k) · k∗(φKM(v)) ∈ ∧qP∗ (4.11)

for all v ∈ V and k ∈ K̃, see [13, Theorem 3.1].

In particular, φKM lies in the space of invariants (S(V )⊗∧qP∗)SO(V +)×SO(V −). There is a
natural isomorphism

[S(V )⊗ ∧qP∗]SO(V +)×SO(V −) ∼−→ [S(V )⊗ Ωq(D(V ))]SO(V )0 , η 7−→ η̃

determined by the relation η̃|e = η. We de�ne

φ̃KM ∈ [S(V )⊗ Ωq(D(V ))]SO(V )0

to be the image of φKM under this isomorphism.
We now have two constructions of di�erential forms associated to a vector v ∈ V . The

following theorem of Brancherau asserts that the two constructions essentially coincide:

Theorem 4.7 ([7]). For any v ∈ V , we have

φ̃KM(v) = 2−q/2e−2πQ(v)ψs̃v .

□

Now we specialize the notation to our case of interest. Take V = sn+1 and D = D(sn+1)
as before. Let X = Symn(R)>0 and consider the map α : X → D as in (3.4). In fact, it will
be more convenient to work on the group B ⊂ G of upper triangular matrices. Consider the
surjective map

B −→ X = Sym>0
n , b 7−→ tb−1b−1 (4.12)

which is a �nite covering map of degree 2n, and let β be the composition

β : B −→ X
α−→ D.
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Pulling back via β, we obtain the bundle E := β∗Ẽ, equipped with the pullback metric (·, ·)E
and connection ∇E , as well as a pullback section sy = β∗s̃y for any y ∈ sn+1. We let

ψy := ψsy ∈ Ωn(n+1)/2(B). (4.13)

and
ζy := ζsy ∈ Ωn(n+1)/2−1(B) (4.14)

denote the Mathai�Quillen and transgression forms attached to this data. Note that dim(B) =
n(n + 1)/2, i.e. ψy is a form of top degree on B. Moreover, it is clear from the construction
that these forms are functorial in the data de�ning them, i.e. we have

ψy = β∗ψs̃y , ζy = β∗ζs̃y .

Remark 4.8. The role that Theorem 4.7 plays in our present work is as follows. On the
one hand, as evident in De�nition 4.6, it is straightforward to write down explicit formulas
for the Kudla�Millson form. On the other hand, we may apply the general machinery of
the Mathai�Quillen formalism, in particular the current equation (4.4), to deduce geometric
properties that are not immediately evident from the construction.

4.3. Schwartz forms. We will employ the terminology of Schwartz forms on real a�ne
algebraic varieties, which is a special case of that of Nash manifolds discussed in [1].

De�nition 4.9. Let M be a real a�ne algebraic smooth variety, and let C∞(M) and Ω•(M)
denote the space of smooth functions, and smooth di�erential forms, respectively. A function
f ∈ C∞(M) is called a Schwartz function if for every algebraic di�erential operator D, the
function Df is bounded on M (cf. [1, Corollary 4.1.3]). The space of Schwartz (di�erential)
forms is the subspace of Ω•(M) spanned by elements of the form fω where f is a Schwartz
function and ω is an algebraic di�erential form.

Note that if M = Rm, we recover the usual notion of Schwartz functions, i.e. rapidly de-
caying functions on Rm such that all partial derivatives of all orders are also rapidly decaying.

Lemma 4.10. Let M be an oriented real a�ne algebraic variety, and let m = dim(M).

(1) If Φ ∈ Ωm(M) is a Schwartz form of top degree, then the integral∫
M

Φ

exists (i.e. is �nite).

(2) If Φ ∈ Ωm−1(M) is a Schwartz form, then∫
M
dΦ = 0.

The same conclusions hold if M is replaced by any connected component M ′ of M .

Proof. Both claims follow from straightforward calculus arguments when M = Rm.
In general, suppose M ′ is a connected component of M , and Φ ∈ Ω•(M ′). There exists a

�nite open coverM ′ = U1∪· · ·∪Uj such that each Ui is isomorphic to Rm as a Nash manifold.
Applying a partition of unity, as in [1, Theorem 4.4.1], there are Schwartz forms Φi ∈ Ω•(Ui)
such that

Φ =
∑

Φi.

In this way, we reduce both claims to the case M = Rm.
□
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We now apply this discussion to the case M = B, the group of upper triangular matrices,
and the metrized bundle E, equipped with its connection ∇E . To this end, we �rst endow E
with an algebraic structure.

Recall that ρ : GLn(R) → O(sn+1) denotes the representation (3.3), and recall that we
had �xed a decomposition sn+1 = V + ⊕ V − with V − := i · Skewn+1. By de�nition, we have
β(b) = ρ(b)(V −) ∈ D for any b ∈ B. By equivariance, E is a trivial vector bundle with
trivialization

triv : B × V − ∼−→ E, (b, v−) 7−→ (b, ρ(b)v−). (4.15)

Using this isomorphism, we identify E with the R-points of the trivial algebraic vector bundle
B × V −. That is, a section s : B → E is algebraic if and only if the function f : B → V −

de�ning triv−1 ◦ s is algebraic. An equivalent way to phrase this de�nition is declaring B-
invariant sections of E algebraic.

Lemma 4.11. (1) For any y ∈ sn+1, the sections sy and ∇E(sy) are algebraic.

(2) If y is regular semi-simple, then sy is regular in the sense of Section 4.1.

Proof. It is a direct consequence of de�nitions that, in terms of (4.15), sy = β∗s̃y corresponds
to the function

fy : B −→ V −, fy(b) = prV −
(
ρ(b)−1(y)

)
and that ∇E(sy) corresponds to dBfy, [I don't understand the statement about ∇E(sy).] both
of which are evidently algebraic.

For a regular semisimple element y, the regularity of sy was already shown in Proposition
3.1 . □

Proposition 4.12. (1) Suppose that y ∈ sn+1 is regular semi-simple. Then ψy and ζy are
Schwartz forms on B.

(2) Let ρ ∈ C∞
c (B) be a function such that ρ ≡ 1 in a neighbourhood of Zs, and let f = 1− ρ.

Then fgs is a Schwartz form.

Proof. In the sequel, use the abbreviations

s = sy, q = n(n+ 1)/2, and C = (−1)q(q−1)/2(2π)−q/2.

(1) By de�nition, we have

ψy = C{e−2π|s|2−2
√
π∇(s)−κ} and ζy = C{s ∧ e−2π|s|2−2

√
π∇(s)−κ}.

Since |s|2 commutes with both ∇(s) and κ in the algebra A, we may rewrite these forms as

ψy = C e−2π|s|2{e−2
√
π∇(s)−κ}, ζy = Ce−2π|s|2{s ∧ e−2

√
π∇(s)−κ}

Note that the di�erential forms {e−2
√
π∇(s)−κ} and {s ∧ e−2

√
π∇(s)−κ} appearing above can

be expressed as polynomial expressions in s,∇(s) and κ, and hence are algebraic, by Lemma
4.11. It therefore will su�ce to show that the function

Φ(b) := e−2π|s(b)|2

is a Schwartz function on B. By de�nition of s and the metric on E, this function is given by

Φ(b) = e2πQ(prV − (ρ(b)−1(y)).
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We multiply it with the constant e−πQ(y). Recall thatQ is invariant along the G-orbits of sn+1,
implying Q(y) = Q(ρ(b)−1(y)) for all b ∈ B. Moreover, from by the orthogonal decomposition
V = V + ⊕ V −, we have

Q(ρ(b)−1(y)) = Q
(
prV +(ρ(b)−1(y))

)
+Q

(
prV −(ρ(b)−1(y))

)
.

Hence we see
e−πQ(y)Φ(b) = e−π[Q(prV + (ρ(b)−1(y)))−Q(prV − (ρ(b)−1(y)))]

= e−πQ∗(ρ(b)−1(y))

for the positive de�nite quadratic form Q∗ = Q|V + − Q|V − . (In fact, this is the Siegel

majorant.) In other words, we consider the Schwartz function Φ′(v) = e−πQ∗(v) on sn+1, and
pull it back to B under the orbit map

B −→ sn+1, b 7−→ b · y.
Since y is regular semi-simple, the stabilizer of y under the action of B is trivial, and the orbit
B · y is Zariski closed in sn+1. Moreover, the action B × sn+1 → sn+1 is an algebraic map,
and in particular, a closed immersion. Thus we obtain an identi�cation B ≃ B · y as a closed
Nash submanifold of sn+1. As the restriction of a Schwartz function on a Nash manifold to
a closed Nash submanifold is again a Schwartz function, we see that Φ = Φ′|B·y is Schwartz,
concluding the proof.

(2) Suppose f ∈ C∞(M) satis�es |f | < C for some constant C and f ≡ 0 on an open
neighbourhood U of Zs. Using (4.6), we may write

fgs =
r−1∑
k=0

f

(∫ ∞

1
tke−2πt2|s|2 dt

t

)
ηk(s)

where each ηk(s) is a polynomial expression in s, ∇(s) and κ. In particular, each ηk(s) is
algebraic.

Moreover, there exists a constant c > 0 such that

|s(b)|2 > c for all b ∈ B \ U.
We then have that for any k ≥ 0,∣∣∣∣f ∫ ∞

1
tke−2πt2|s|2 dt

t

∣∣∣∣ < C

∫ ∞

1
tke−2πt2|s|2 dt

t

< C

∫ ∞

1
tke−2πt2|( 1

2
|s|2+ c

2)
dt

t

< Ce−π|s|2
∫ ∞

1
tke−πct2 dt

t

The integral is �nite, and the function e−π|s|2 is Schwartz, as in part (1). This concludes the
proof. □

Let B0 ⊂ B denote the connected component of the identity, so that the map B → X
restricts to an isomorphism

B0 ∼−→ X. (4.16)

This isomorphism also identi�es

B0 ∩ Zsy
∼→ X ∩Dy =

{
pt if y matches to signature (n, 0)

∅ otherwise



18 GAUSSIAN TEST FUNCTIONS FOR THE JACQUET�RALLIS RELATIVE TRACE FORMULA

cf. Proposition 3.1. Furthermore, in Section 3.3, we had �xed orientations on D and on
V − = i · Skewn+1, which in turn determined an orientation on Dy, as well as on X via

Proposition 3.2. The orientation on V − determines an orientation on the bundle Ẽ, and we
have

[Zsy ] = [Dy],

where [Zsy ] is oriented according to De�nition 4.2. On the other hand, using (4.16) to transfer

the orientation on X to B0, we have

deg
(
[Zsy ]

)
= [X] ·[D] [Dy] =

{
ε(y) if y matches to signature (n, 0)

0 otherwise.
(4.17)

Theorem 4.13. Let y ∈ sn+1 be a regular semi-simple element. Then∫
B0

ψy =

{
ε(y) if y matches to signature (n, 0)

0 otherwise.

Proof. If B0 were compact, this identity would follow immediately from Proposition 4.5 by
evaluating (4.4) at the constant function 1. In our case however, we will need to be a bit more
indirect.

Let us again abbreviate s = sy. We begin by �xing a sequence of successively relatively
compact open neighbourhoods

U1 ⊂ U2 ⊂ · · ·
of Zs such that ∪Uk = B0. (If Zs is empty, we �x an arbitrary family of nested relatively
compact open sets exhausting B0.) We choose a family of compactly supported functions
ρk ∈ C∞

c (B0) such that

|ρk(b)| ≤ 1 for all b ∈ B0

and

ρk ≡ 1 on Uk.

Then, by Proposition 4.5, we have∫
B0

ψs = lim
k→∞

∫
B0

ψsρk

= lim
k→∞

δ[Z(s)](ρk) + 2
√
π

∫
B0

gs ∧ dρk.

By construction, we also have for all k that

δ[Z(s)](ρk) = deg([Zs]) =

{
ε(y) if y matches to signature (n, 0)

0 otherwise.

On the other hand, let f ∈ C∞(B0) be such that f ≡ 0 on U1 and f ≡ 1 on B0 \U2. If k ≥ 3,
then dρk is supported on B0 \ U2, so∫

B0

gs ∧ dρk =

∫
B0

(fgs) ∧ dρk =

∫
B0

d(fgs) ∧ ρk.

By Proposition 4.12 and Lemma 4.10, we have

lim
k→∞

∫
B0

d(fgs) ∧ ρk =

∫
B0

d(fgs) = 0,

concluding the proof of the theorem. □
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4.4. Di�erential forms and orbital integrals. As a �nal step, we interpret Theorem 4.13
in terms of orbital integrals. Consider the Iwasawa decomposition G = B0 ·O(n). We obtain
a decomposition dg = db dk of measures, where dg is our �xed Haar measure on G, where dk
is the Haar measure on O(n) normalized to have total volume 1, and where db is the left Haar
measure determined by the integral formula∫

G
f(g)dg =

∫
B0

∫
O(n)

f(bk) dk db

for any integrable function f .
Next, recall that we have �xed an orientation on B0 ≃ X as in Section 3.3. Let ω̃ ∈ Ωtop(B)

be a left-invariant (algebraic, in particular) di�erential form of top degree whose restriction
to B0 is positive, and induces the measure db; i.e. for any integrable function f on B, we have∫

B0

fω̃ =

∫
B0

f(b)db.

Let b = Lie(B), and let ω ∈ det(b) be the value ω = ω̃e of ω̃ at the identity element. Consider
the pullback map induced by β : B → SO(sn+1),

β∗ : S(sn+1)⊗ ∧n(n+1)/2(P∗) −→ S(sn+1)⊗ det(b),

and de�ne Φ ∈ S(sn+1) by the identity

β∗(φKM) = Φ⊗ ω.

Lemma 4.14. For k ∈ O(n) and y ∈ sn+1, we have Φ(k−1 · y) = η(k)Φ(y).

Proof. Let V + = i · Symn+1 and V − = i · Symn+1 again denote our usual choice of maximal
de�nite subspaces of sn+1. The composition

O(n)
α−→ O(V +)×O(V −)

ν−→ {±1}

equals ηn, because the element σ = diag(−1, 1, . . . , 1) acts with determinant (−1)n on V −.

Moreover, the identi�cation B0
∼→ X induces an isomorphism b

∼→ TeX = Symn, and hence
via composition an action of O(n) on b. Its determinant, which is simply the determinant of
O(n) acting on Symn, is η

n−1.
From the invariance property in (4.11), we obtain for general k ∈ O(n) that

Φ(k−1v)⊗ ω = η(k)n · Φ(v)⊗ (k∗ω)

= η(k)Φ(v).

□

We now state our main theorem:

Theorem 4.15. Suppose y ∈ sn+1 is regular semi-simple. Then

2n(n+1)/4Orb(y,Φ) =

{
e−2πQ(y) if y matches to signature (n, 0)

0 otherwise.

In other words, 2−n(n+1)/4Φ is a Gaussian test function.
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Proof. By de�nition, we have

Orb(y,Φ) = ε(y)

∫
G
Φ(g−1 · y) η(g) dg

= ε(y)

∫
B0

∫
O(n)

Φ(k−1b−1 · y) η(k) dkdb

= ε(y)

∫
B0

Φ(b−1 · y)db

where in the last line, we use the fact that Φ(k · y)η(k) = Φ(y), as in Lemma 4.14.
Applying our conventions on measures, as well as Theorem 4.7, we have∫

B0

Φ(b−1 · y)db =
∫
B0

Φ(b−1 · y) ω̃

=

∫
B0

β∗(φ̃KM(y))

= 2−n(n+1)/4e−2πQ(y)

∫
B0

ψy.

The result now follows from Theorem 4.13. □

Example 4.16 (Case n = 1). In this situation our construction recovers the test function
used in [26, �12]. Consider G = R× with Haar measure dt/t. We denote the coordinates on
s2 by

s2 = i ·
{(

a y1
y2 d

)∣∣∣∣ a, d, y1, y2 ∈ R
}
.

Then a and d are G-invariant. We pick a transfer factor ε that is positive whenever y1 and
y2 are positive. The quadratic form Q(y) = −tr(y2) is give by

Q(y) = a2 + d2 + 2y1y2.

Its de�nite components are

Q+(y) = a2 + d2 +
(y1 + y2)

2

2
, Q− =

(y1 − y2)
2

2
.

The Siegel�Gaussian is hence

e−2π(Q++Q−) = e−2π(a2+d2+y21+y22).

The Schwartz function Φ from Theorem 4.15 is

Φ(y) = 2−1/2 · (y1 + y2)e
−2π(a2+d2+y21+y22).

The theorem now states that

Orb

(
i ·
(
a y1
y2 d

)
,Φ

)
= e−2π(a2+d2) ·

{
e−4πy1y2 if y1y2 > 0

0 otherwise.

Example 4.17 (Case n = 2). We �rst normalize the Haar measure on G = GL2(R). Use the
following notation for the coordinates of the Iwasawa decomposition of an element g ∈ G:

g =

(
a1

a2

)
·
(
1 b

1

)
· θ, a1, a2 ∈ R>0, b ∈ R, θ ∈ O(2).

Then �x the measure as

dg =
da1 da2 db dθ

a1a2
,

∫
O(2)

dθ = 1.
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We denote the coordinates on s3 by

s3 = i ·


y11 y12 v1
y21 y22 v2
w1 w2 d

∣∣∣∣∣∣ all entries in R

 .

The entry d is G-invariant. We pick a transfer factor ε that is positive on elements of the
form (2.7) with λ1 > λ2, µ1 > 0, and µ2 > 0. The quadratic form Q(y) = −tr(y2) is given by

Q(y) = y211 + y222 + d2 + 2(y12y21 + v1w1 + v2w2).

Its de�nite components are

Q+(y) = y211 + y222 + d2 +
(y12 + y21)

2 + (v1 + w1)
2 + (v2 + w2)

2

2

Q−(y) =
(y12 − y21)

2 + (v1 − w1)
2 + (v2 − w2)

2

2
.

The Siegel�Gaussian is hence

e−2π(Q++Q−) = e−2π(y211+ ... +d2)

where the exponent involves the sum of the squares of all 9 entries of y. The Schwartz function
Φ from Theorem 4.15 is

Φ(y) =

[√
2 · (y11 − y22)(v1 + w1)(v2 + w2)

− 1√
2
(y12 + y21)

(
(v1 + w1)

2 − (v2 + w2)
2
)]

· e−2π(Q++Q−).

5. From Lie algebra to group

Recall the de�nition of Sn+1 from (1.1). Our aim is to prove the following theorem.

Theorem 5.1. There exists a Gaussian Schwartz function on Sn+1. That is, there exists a
Schwartz function Ψ ∈ S(Sn+1) such that for all regular semi-simple γ ∈ Sn+1

Orb(γ,Ψ) =

{
1 if γ matches to signature (n, 0)

0 otherwise.
(5.1)

Recall that the occurring orbital integral was de�ned in (1.3), but that we still need to
provide the de�nition of the transfer factor ϵ : Sn+1,rs → C×. This will be done in the next
subsection. The proof of Theorem 5.1 will be given after that (see �5.2).

5.1. Transfer factors. We completely follow the conventions in the literature, see [25] and
[22]. Fix a character η′ : C× → C× (necessarily not quadratic) that extends η : R× → {±1}.
Note that all such characters are of the form z 7→ (z/|z|)m with m ∈ 1 + 2Z. Let us write
Sn+1,rs ⊆ Sn+1 for the subset of regular semi-simple elements. Let e be be the row vector
(0, . . . , 0, 1) ∈ Cn+1. De�ne the transfer factor on Sn+1 by

ϵ : Sn+1,rs −→ C×

γ 7−→ η′
(
det(γ)−⌊(n+1)/2⌋ det

(
(e, eγ, . . . , eγn)

))
.

(5.2)

Here, (e, eγ, . . . , eγn) denotes the matrix with eγi in the (i + 1)-th row. Note that unlike in
the Lie algebra setting, ϵ is not locally constant. It still satis�es ϵ(hγh−1) = η(h)ϵ(γ) for all
h ∈ GLn(R) and γ ∈ Sn+1,rs. The de�nition of (1.3) is now complete.
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We would like to compare ϵ with a transfer factor on the Lie algebra. So, again following
[25] and [22], we make the following explicit choice:

ε : sn+1,rs −→ {±1}

y 7−→ η
(
(−i)n(n+1)/2 · det

(
(e, ey, . . . , eyn)

))
.

(5.3)

De�nition 5.2. Let ξ ∈ C1 be an element of norm 1. De�ne open subsets Sn+1,ξ and sn+1,ξ

by the condition

det(γ − ξ) ̸= 0 resp. det(y − ξ) ̸= 0. (5.4)

We write Sn+1,rs,ξ and sn+1,rs,ξ for their subsets of regular semi-simple elements. The Cayley
transform (with parameter ξ) is the isomorphism

cξ : sn+1,1
∼−→ Sn+1,−ξ

y 7−→ ξ
1 + y

1− y
.

Its inverse is given by γ 7→ (γ − ξ)/(γ + ξ). Note that cξ is equivariant with respect to
GLn(R)-conjugation. In particular, it preserves the property of being regular semi-simple,
inducing an isomorphism

cξ : sn+1,rs,1
∼−→ Sn+1,rs,−ξ.

It was shown in [25, Lemma 3.5] that ε and ϵ are compatible under the Cayley transform.
There seems to be a typo in the argument, though, so we give a complete proof.

Lemma 5.3 ([25, Lemma 3.5]). Let ξ ∈ C1 be an element of norm 1. Then ε on sn+1,rs,1

and ϵ on Sn+1,rs,−ξ are compatible in the sense that there exists a smooth, algebraic, nowhere
vanishing function ρξ on sn+1,1 such that for all regular semi-simple y ∈ sn+1,rs,1,

ϵ(cξ(y)) = ρε(y) · ε(y).

Proof. De�ne γ = ξ−1cξ(y); concretely, γ = (1 + y)/(1 − y). Pulling out factors of ξ row by
row in the de�nition of ϵ, we have

ϵ(cξ(y)) = ρ1(ξ) ϵ(γ), ρ1(ξ) = η′(ξ)n(n+1)/2−(n+1)·⌊(n+1)/2⌋.

Next, we have

ϵ(γ) = ρ2(y) η
′( det((e, eγ, . . . , eγn)), ρ2(y) = η′(det(1 + y)/ det(1− y))−⌊(n+1)/2⌋.

Note that ρ2 is a smooth function nowhere vanishing function in y ∈ sn+1,1. Set T = 2y/(1−y)
and observe that γ = 1 + T . By elementary row operations, we �nd

det
(
(e, e(1 + T ), . . . , e(1 + T )n

)
) = det

(
(e, eT, . . . , eTn)

)
.

Multiplying with (1− y)n from the right, and writing r3(y) = 2n(n+1)/2 det(1− y)−n, we have

det
(
e, eT, . . . , eTn

)
= r3(y) det

(
(e(1− y)n, ey(1− y)n−1, . . . , eyn−1(1− y), eyn)

)
.

By elementary row operations, the last determinant equals

det
(
(e, ey, . . . , eyn)

)
,

which is also the determinant occurring in (5.3). In summary, we obtain that

ϵ(cξ(y)) = ρ1(ξ) · ρ2(y) · η′(r3(y)) · η′(i)n(n+1)/2 · ε(y) (5.5)

which completes the proof. □
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5.2. Proof of Theorem 5.1. We now prove Theorem 5.1. Let Qn+1 and qn+1 denote the
R-points of the GIT quotients by GLn of (the algebraic varieties underlying) Sn+1 and sn+1.
For every n-dimensional hermitian C-vector space V , these are also the GIT quotients by
U(V ) of U(V ⊕ C) and u(V ⊕ C). The quotient maps

inv : Sn+1, U(V ⊕ C) −→ Qn+1,

inv : sn+1, u(V ⊕ C) −→ qn+1

realize the matching bijections in (1.2) and (1.5).
Recall that our aim is to construct a Schwartz function Ψ ∈ S(Sn+1) such that (5.1) holds.

This construction can be performed locally in the following sense: Let T ⊆ Qn+1 be the image
inv(U(n+ 1)), which is compact. Assume that T ⊆ ∪r

i=1Ui is an open covering of T in Qn+1

and that Ψi ∈ S(Sn+1) are such that for all γ ∈ inv−1(Ui),

Orb(γ,Ψi) =

{
1 if γ matches to signature (n, 0)

0 otherwise.

Let ρi ⊆ C∞
c (Ui) be such that (

∑r
i=1 ρi)|T ≡ 1. Then

∑r
i=1 ρiΨi satis�es (5.1) and the proof

of Theorem 5.1 is complete. Our task is hence to construct the datum (Ui,Ψi)
r
i=1. Since T

is compact, it su�ces for each t ∈ T to construct an open neighborhood U ⊆ Qn+1 and a
Schwartz function ΨU satisfying (5.1) for γ ∈ inv−1(U).

The de�nition of Sn+1,ξ and sn+1,ξ by (5.4) in De�nition 5.2 is in terms of the G-invariant
polynomials det(γ−ξ) and det(y−ξ). There are hence Zariski open subsets Qn+1,ξ and qn+1,ξ

of Qn+1 (resp. qn+1) such that

Sn+1,ξ = inv−1(Qn+1,ξ), sn+1,ξ = inv−1(qn+1,ξ).

Choose ξ ∈ C1 with t ∈ Qn+1,ξ and consider the Cayley transform

cξ : sn+1,1
∼−→ Sn+1,ξ.

By G-equivariance of cξ, for any Schwartz function Φ ∈ S(sn+1) and regular semi-simple
γ ∈ Sn+1,rs,ξ, we have

ϵ(γ)−1Orb(γ, cξ,∗(Φ)) = ε(c−1
ξ (γ))−1Orb(c−1

ξ (γ),Φ).

Let λ ∈ C∞
c (Qn+1,ξ) be any compactly supported function. Then inv∗(λ)·cξ,∗(Φ) is a Schwartz

function on Sn+1 with support in Sn+1,ξ. The ratio

ε(c−1
ξ (γ))/ϵ(γ), γ ∈ Sn+1,ξ

is an algebraic invertible function by Lemma 5.3, and hence

ΨU :=
ε(c−1

ξ (γ))

ϵ(γ)
· inv∗(λ) · cξ,∗(Φ)

lies in S(Sn+1) and satis�es

Orb(γ,ΨU ) = λ(inv(γ)) ·Orb(c−1
ξ (γ),Φ), γ ∈ inv−1(U). (5.6)

We now make the following choices. Let Φ ∈ S(sn+1) be the Gaussian test function from
4.15. Choose λ such that λ ≡ cξ,∗(e

2πQ) on a neighborhood U of t. (Here, the quadratic form
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Q(y) = −tr(y2) has been descended to a function on Qn+1.) Then (5.6) specializes to

Orb(γ,ΨU ) = e2πQ(c−1
ξ (γ))Orb(c−1

ξ (γ),Φ)

=

{
1 if γ ∈ inv−1(U) matches to signature (n, 0)

0 otherwise.

Here, in the �nal step, we have used the following lemma.

Lemma 5.4. Let y ∈ sn+1,rs,1 be a regular semi-simple element. Then y matches to signature
(r, s) if and only if cξ(γ) matches to signature (r, s).

Proof. The Cayley transform can also be de�ned on the unitary side by the same formulas.
The statement then follows from the de�nition of matching. □

This completes the proof of Theorem 5.1. □
Let us write U(n+1) for U(V(n,0)⊕C). For a smooth function ϕ on U(n+1) and a regular

semi-simple element g ∈ U(n+ 1)rs, we consider the U(n)-orbital integral

Orb(g, ϕ) =

∫
U(n)

ϕ(h−1gh) dh

where the Haar measure is normalized by Vol(U(n)) = 1.

Corollary 5.5. Let ϕ be an algebraic function on U(n + 1), such as a matrix coe�cient or
the character of a �nite-dimensional representation. Then there exists a Schwartz function
ψ ∈ S(Sn+1) such that for all γ ∈ Sn+1,rs,

Orb(γ, ψ) =

{
Orb(g, ϕ) if γ has a matching g ∈ U(n+ 1)

0 otherwise.
.

Proof. Let U(n) and U(n+1) be the algebraic groups de�ning U(n) and U(n+1). The function
ϕ being algebraic means that ϕ ∈ R[U(n+1)]. The averaged function ϕ(g) :=

∫
U(n) ϕ(h

−1gh)

then lies in the invariants R[U(n + 1)]U(n). Since U(n) is connected, these are the same as

the algebraic invariants R[U(n+ 1)]U(n). In other words, ϕ comes by pullback from the GIT
quotient. In particular, there exists an algebraic function f on Sn+1 such that ϕ = inv∗(f)
and we have

Orb(g, ϕ) = f(inv(g))

for all g ∈ U(n+ 1)rs.
Let Ψ be a Gaussian test function as in Theorem 5.1. Then, for every γ ∈ Sn+1,rs, we �nd

Orb(γ, fΨ) = f(inv(γ))Orb(γ,Ψ)

=

{
Orb(g, ϕ) if γ matches an element g ∈ U(n+ 1)

0 otherwise.

Thus ψ = fΨ satis�es the requirements of the corollary. □
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